This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lspprat . In the second case of lsppratlem1 , y e. ( N{ X , Y } ) C_ ( N{ x , Y } ) and y e/ ( N{ x } ) implies Y e. ( N{ x , y } ) and thus X e. ( N{ x , Y } ) C_ ( N{ x , y } ) as well. (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | |- V = ( Base ` W ) |
|
| lspprat.s | |- S = ( LSubSp ` W ) |
||
| lspprat.n | |- N = ( LSpan ` W ) |
||
| lspprat.w | |- ( ph -> W e. LVec ) |
||
| lspprat.u | |- ( ph -> U e. S ) |
||
| lspprat.x | |- ( ph -> X e. V ) |
||
| lspprat.y | |- ( ph -> Y e. V ) |
||
| lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
||
| lsppratlem1.o | |- .0. = ( 0g ` W ) |
||
| lsppratlem1.x2 | |- ( ph -> x e. ( U \ { .0. } ) ) |
||
| lsppratlem1.y2 | |- ( ph -> y e. ( U \ ( N ` { x } ) ) ) |
||
| lsppratlem4.x3 | |- ( ph -> X e. ( N ` { x , Y } ) ) |
||
| Assertion | lsppratlem4 | |- ( ph -> ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | |- V = ( Base ` W ) |
|
| 2 | lspprat.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspprat.n | |- N = ( LSpan ` W ) |
|
| 4 | lspprat.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspprat.u | |- ( ph -> U e. S ) |
|
| 6 | lspprat.x | |- ( ph -> X e. V ) |
|
| 7 | lspprat.y | |- ( ph -> Y e. V ) |
|
| 8 | lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
|
| 9 | lsppratlem1.o | |- .0. = ( 0g ` W ) |
|
| 10 | lsppratlem1.x2 | |- ( ph -> x e. ( U \ { .0. } ) ) |
|
| 11 | lsppratlem1.y2 | |- ( ph -> y e. ( U \ ( N ` { x } ) ) ) |
|
| 12 | lsppratlem4.x3 | |- ( ph -> X e. ( N ` { x , Y } ) ) |
|
| 13 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 14 | 4 13 | syl | |- ( ph -> W e. LMod ) |
| 15 | 1 2 | lssss | |- ( U e. S -> U C_ V ) |
| 16 | 5 15 | syl | |- ( ph -> U C_ V ) |
| 17 | 16 | ssdifssd | |- ( ph -> ( U \ { .0. } ) C_ V ) |
| 18 | 17 10 | sseldd | |- ( ph -> x e. V ) |
| 19 | 16 | ssdifssd | |- ( ph -> ( U \ ( N ` { x } ) ) C_ V ) |
| 20 | 19 11 | sseldd | |- ( ph -> y e. V ) |
| 21 | 1 2 3 14 18 20 | lspprcl | |- ( ph -> ( N ` { x , y } ) e. S ) |
| 22 | df-pr | |- { x , Y } = ( { x } u. { Y } ) |
|
| 23 | snsspr1 | |- { x } C_ { x , y } |
|
| 24 | 18 20 | prssd | |- ( ph -> { x , y } C_ V ) |
| 25 | 1 3 | lspssid | |- ( ( W e. LMod /\ { x , y } C_ V ) -> { x , y } C_ ( N ` { x , y } ) ) |
| 26 | 14 24 25 | syl2anc | |- ( ph -> { x , y } C_ ( N ` { x , y } ) ) |
| 27 | 23 26 | sstrid | |- ( ph -> { x } C_ ( N ` { x , y } ) ) |
| 28 | 18 | snssd | |- ( ph -> { x } C_ V ) |
| 29 | 8 | pssssd | |- ( ph -> U C_ ( N ` { X , Y } ) ) |
| 30 | 1 2 3 14 18 7 | lspprcl | |- ( ph -> ( N ` { x , Y } ) e. S ) |
| 31 | df-pr | |- { X , Y } = ( { X } u. { Y } ) |
|
| 32 | 12 | snssd | |- ( ph -> { X } C_ ( N ` { x , Y } ) ) |
| 33 | snsspr2 | |- { Y } C_ { x , Y } |
|
| 34 | 18 7 | prssd | |- ( ph -> { x , Y } C_ V ) |
| 35 | 1 3 | lspssid | |- ( ( W e. LMod /\ { x , Y } C_ V ) -> { x , Y } C_ ( N ` { x , Y } ) ) |
| 36 | 14 34 35 | syl2anc | |- ( ph -> { x , Y } C_ ( N ` { x , Y } ) ) |
| 37 | 33 36 | sstrid | |- ( ph -> { Y } C_ ( N ` { x , Y } ) ) |
| 38 | 32 37 | unssd | |- ( ph -> ( { X } u. { Y } ) C_ ( N ` { x , Y } ) ) |
| 39 | 31 38 | eqsstrid | |- ( ph -> { X , Y } C_ ( N ` { x , Y } ) ) |
| 40 | 2 3 | lspssp | |- ( ( W e. LMod /\ ( N ` { x , Y } ) e. S /\ { X , Y } C_ ( N ` { x , Y } ) ) -> ( N ` { X , Y } ) C_ ( N ` { x , Y } ) ) |
| 41 | 14 30 39 40 | syl3anc | |- ( ph -> ( N ` { X , Y } ) C_ ( N ` { x , Y } ) ) |
| 42 | 29 41 | sstrd | |- ( ph -> U C_ ( N ` { x , Y } ) ) |
| 43 | 22 | fveq2i | |- ( N ` { x , Y } ) = ( N ` ( { x } u. { Y } ) ) |
| 44 | 42 43 | sseqtrdi | |- ( ph -> U C_ ( N ` ( { x } u. { Y } ) ) ) |
| 45 | 44 | ssdifd | |- ( ph -> ( U \ ( N ` { x } ) ) C_ ( ( N ` ( { x } u. { Y } ) ) \ ( N ` { x } ) ) ) |
| 46 | 45 11 | sseldd | |- ( ph -> y e. ( ( N ` ( { x } u. { Y } ) ) \ ( N ` { x } ) ) ) |
| 47 | 1 2 3 | lspsolv | |- ( ( W e. LVec /\ ( { x } C_ V /\ Y e. V /\ y e. ( ( N ` ( { x } u. { Y } ) ) \ ( N ` { x } ) ) ) ) -> Y e. ( N ` ( { x } u. { y } ) ) ) |
| 48 | 4 28 7 46 47 | syl13anc | |- ( ph -> Y e. ( N ` ( { x } u. { y } ) ) ) |
| 49 | df-pr | |- { x , y } = ( { x } u. { y } ) |
|
| 50 | 49 | fveq2i | |- ( N ` { x , y } ) = ( N ` ( { x } u. { y } ) ) |
| 51 | 48 50 | eleqtrrdi | |- ( ph -> Y e. ( N ` { x , y } ) ) |
| 52 | 51 | snssd | |- ( ph -> { Y } C_ ( N ` { x , y } ) ) |
| 53 | 27 52 | unssd | |- ( ph -> ( { x } u. { Y } ) C_ ( N ` { x , y } ) ) |
| 54 | 22 53 | eqsstrid | |- ( ph -> { x , Y } C_ ( N ` { x , y } ) ) |
| 55 | 2 3 | lspssp | |- ( ( W e. LMod /\ ( N ` { x , y } ) e. S /\ { x , Y } C_ ( N ` { x , y } ) ) -> ( N ` { x , Y } ) C_ ( N ` { x , y } ) ) |
| 56 | 14 21 54 55 | syl3anc | |- ( ph -> ( N ` { x , Y } ) C_ ( N ` { x , y } ) ) |
| 57 | 56 12 | sseldd | |- ( ph -> X e. ( N ` { x , y } ) ) |
| 58 | 57 51 | jca | |- ( ph -> ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) |