This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lspprat . Negating the assumption on y , we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | |- V = ( Base ` W ) |
|
| lspprat.s | |- S = ( LSubSp ` W ) |
||
| lspprat.n | |- N = ( LSpan ` W ) |
||
| lspprat.w | |- ( ph -> W e. LVec ) |
||
| lspprat.u | |- ( ph -> U e. S ) |
||
| lspprat.x | |- ( ph -> X e. V ) |
||
| lspprat.y | |- ( ph -> Y e. V ) |
||
| lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
||
| lsppratlem6.o | |- .0. = ( 0g ` W ) |
||
| Assertion | lsppratlem6 | |- ( ph -> ( x e. ( U \ { .0. } ) -> U = ( N ` { x } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | |- V = ( Base ` W ) |
|
| 2 | lspprat.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspprat.n | |- N = ( LSpan ` W ) |
|
| 4 | lspprat.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspprat.u | |- ( ph -> U e. S ) |
|
| 6 | lspprat.x | |- ( ph -> X e. V ) |
|
| 7 | lspprat.y | |- ( ph -> Y e. V ) |
|
| 8 | lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
|
| 9 | lsppratlem6.o | |- .0. = ( 0g ` W ) |
|
| 10 | 8 | adantr | |- ( ( ph /\ x e. ( U \ { .0. } ) ) -> U C. ( N ` { X , Y } ) ) |
| 11 | 4 | adantr | |- ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> W e. LVec ) |
| 12 | 5 | adantr | |- ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> U e. S ) |
| 13 | 6 | adantr | |- ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> X e. V ) |
| 14 | 7 | adantr | |- ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> Y e. V ) |
| 15 | 8 | adantr | |- ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> U C. ( N ` { X , Y } ) ) |
| 16 | simprl | |- ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> x e. ( U \ { .0. } ) ) |
|
| 17 | simprr | |- ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> y e. ( U \ ( N ` { x } ) ) ) |
|
| 18 | 1 2 3 11 12 13 14 15 9 16 17 | lsppratlem5 | |- ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> ( N ` { X , Y } ) C_ U ) |
| 19 | ssnpss | |- ( ( N ` { X , Y } ) C_ U -> -. U C. ( N ` { X , Y } ) ) |
|
| 20 | 18 19 | syl | |- ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> -. U C. ( N ` { X , Y } ) ) |
| 21 | 20 | expr | |- ( ( ph /\ x e. ( U \ { .0. } ) ) -> ( y e. ( U \ ( N ` { x } ) ) -> -. U C. ( N ` { X , Y } ) ) ) |
| 22 | 10 21 | mt2d | |- ( ( ph /\ x e. ( U \ { .0. } ) ) -> -. y e. ( U \ ( N ` { x } ) ) ) |
| 23 | 22 | eq0rdv | |- ( ( ph /\ x e. ( U \ { .0. } ) ) -> ( U \ ( N ` { x } ) ) = (/) ) |
| 24 | ssdif0 | |- ( U C_ ( N ` { x } ) <-> ( U \ ( N ` { x } ) ) = (/) ) |
|
| 25 | 23 24 | sylibr | |- ( ( ph /\ x e. ( U \ { .0. } ) ) -> U C_ ( N ` { x } ) ) |
| 26 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 27 | 4 26 | syl | |- ( ph -> W e. LMod ) |
| 28 | 27 | adantr | |- ( ( ph /\ x e. ( U \ { .0. } ) ) -> W e. LMod ) |
| 29 | 5 | adantr | |- ( ( ph /\ x e. ( U \ { .0. } ) ) -> U e. S ) |
| 30 | eldifi | |- ( x e. ( U \ { .0. } ) -> x e. U ) |
|
| 31 | 30 | adantl | |- ( ( ph /\ x e. ( U \ { .0. } ) ) -> x e. U ) |
| 32 | 2 3 28 29 31 | ellspsn5 | |- ( ( ph /\ x e. ( U \ { .0. } ) ) -> ( N ` { x } ) C_ U ) |
| 33 | 25 32 | eqssd | |- ( ( ph /\ x e. ( U \ { .0. } ) ) -> U = ( N ` { x } ) ) |
| 34 | 33 | ex | |- ( ph -> ( x e. ( U \ { .0. } ) -> U = ( N ` { x } ) ) ) |