This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if z is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | |- V = ( Base ` W ) |
|
| lspprat.s | |- S = ( LSubSp ` W ) |
||
| lspprat.n | |- N = ( LSpan ` W ) |
||
| lspprat.w | |- ( ph -> W e. LVec ) |
||
| lspprat.u | |- ( ph -> U e. S ) |
||
| lspprat.x | |- ( ph -> X e. V ) |
||
| lspprat.y | |- ( ph -> Y e. V ) |
||
| lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
||
| Assertion | lspprat | |- ( ph -> E. z e. V U = ( N ` { z } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | |- V = ( Base ` W ) |
|
| 2 | lspprat.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspprat.n | |- N = ( LSpan ` W ) |
|
| 4 | lspprat.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspprat.u | |- ( ph -> U e. S ) |
|
| 6 | lspprat.x | |- ( ph -> X e. V ) |
|
| 7 | lspprat.y | |- ( ph -> Y e. V ) |
|
| 8 | lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
|
| 9 | ssdif0 | |- ( U C_ { ( 0g ` W ) } <-> ( U \ { ( 0g ` W ) } ) = (/) ) |
|
| 10 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 11 | 4 10 | syl | |- ( ph -> W e. LMod ) |
| 12 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 13 | 1 12 | lmod0vcl | |- ( W e. LMod -> ( 0g ` W ) e. V ) |
| 14 | 11 13 | syl | |- ( ph -> ( 0g ` W ) e. V ) |
| 15 | 14 | adantr | |- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> ( 0g ` W ) e. V ) |
| 16 | simpr | |- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> U C_ { ( 0g ` W ) } ) |
|
| 17 | 12 2 | lss0ss | |- ( ( W e. LMod /\ U e. S ) -> { ( 0g ` W ) } C_ U ) |
| 18 | 11 5 17 | syl2anc | |- ( ph -> { ( 0g ` W ) } C_ U ) |
| 19 | 18 | adantr | |- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> { ( 0g ` W ) } C_ U ) |
| 20 | 16 19 | eqssd | |- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> U = { ( 0g ` W ) } ) |
| 21 | 12 3 | lspsn0 | |- ( W e. LMod -> ( N ` { ( 0g ` W ) } ) = { ( 0g ` W ) } ) |
| 22 | 11 21 | syl | |- ( ph -> ( N ` { ( 0g ` W ) } ) = { ( 0g ` W ) } ) |
| 23 | 22 | adantr | |- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> ( N ` { ( 0g ` W ) } ) = { ( 0g ` W ) } ) |
| 24 | 20 23 | eqtr4d | |- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> U = ( N ` { ( 0g ` W ) } ) ) |
| 25 | sneq | |- ( z = ( 0g ` W ) -> { z } = { ( 0g ` W ) } ) |
|
| 26 | 25 | fveq2d | |- ( z = ( 0g ` W ) -> ( N ` { z } ) = ( N ` { ( 0g ` W ) } ) ) |
| 27 | 26 | rspceeqv | |- ( ( ( 0g ` W ) e. V /\ U = ( N ` { ( 0g ` W ) } ) ) -> E. z e. V U = ( N ` { z } ) ) |
| 28 | 15 24 27 | syl2anc | |- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> E. z e. V U = ( N ` { z } ) ) |
| 29 | 28 | ex | |- ( ph -> ( U C_ { ( 0g ` W ) } -> E. z e. V U = ( N ` { z } ) ) ) |
| 30 | 9 29 | biimtrrid | |- ( ph -> ( ( U \ { ( 0g ` W ) } ) = (/) -> E. z e. V U = ( N ` { z } ) ) ) |
| 31 | 1 2 | lssss | |- ( U e. S -> U C_ V ) |
| 32 | 5 31 | syl | |- ( ph -> U C_ V ) |
| 33 | 32 | ssdifssd | |- ( ph -> ( U \ { ( 0g ` W ) } ) C_ V ) |
| 34 | 33 | sseld | |- ( ph -> ( z e. ( U \ { ( 0g ` W ) } ) -> z e. V ) ) |
| 35 | 1 2 3 4 5 6 7 8 12 | lsppratlem6 | |- ( ph -> ( z e. ( U \ { ( 0g ` W ) } ) -> U = ( N ` { z } ) ) ) |
| 36 | 34 35 | jcad | |- ( ph -> ( z e. ( U \ { ( 0g ` W ) } ) -> ( z e. V /\ U = ( N ` { z } ) ) ) ) |
| 37 | 36 | eximdv | |- ( ph -> ( E. z z e. ( U \ { ( 0g ` W ) } ) -> E. z ( z e. V /\ U = ( N ` { z } ) ) ) ) |
| 38 | n0 | |- ( ( U \ { ( 0g ` W ) } ) =/= (/) <-> E. z z e. ( U \ { ( 0g ` W ) } ) ) |
|
| 39 | df-rex | |- ( E. z e. V U = ( N ` { z } ) <-> E. z ( z e. V /\ U = ( N ` { z } ) ) ) |
|
| 40 | 37 38 39 | 3imtr4g | |- ( ph -> ( ( U \ { ( 0g ` W ) } ) =/= (/) -> E. z e. V U = ( N ` { z } ) ) ) |
| 41 | 30 40 | pm2.61dne | |- ( ph -> E. z e. V U = ( N ` { z } ) ) |