This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lspprat . Combine the two cases and show a contradiction to U C. ( N{ X , Y } ) under the assumptions on x and y . (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspprat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspprat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspprat.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lspprat.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspprat.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspprat.p | ⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | ||
| lsppratlem1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lsppratlem1.x2 | ⊢ ( 𝜑 → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) | ||
| lsppratlem1.y2 | ⊢ ( 𝜑 → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) | ||
| Assertion | lsppratlem5 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspprat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspprat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspprat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspprat.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 6 | lspprat.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 7 | lspprat.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 8 | lspprat.p | ⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | |
| 9 | lsppratlem1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 10 | lsppratlem1.x2 | ⊢ ( 𝜑 → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) | |
| 11 | lsppratlem1.y2 | ⊢ ( 𝜑 → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) | |
| 12 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LVec ) |
| 13 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑈 ∈ 𝑆 ) |
| 14 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ 𝑉 ) |
| 15 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
| 16 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 17 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
| 18 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 20 | 1 2 3 12 13 14 15 16 9 17 18 19 | lsppratlem3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) |
| 21 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑊 ∈ LVec ) |
| 22 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑈 ∈ 𝑆 ) |
| 23 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑋 ∈ 𝑉 ) |
| 24 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
| 25 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 26 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
| 27 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 28 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) | |
| 29 | 1 2 3 21 22 23 24 25 9 26 27 28 | lsppratlem4 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) |
| 30 | 1 2 3 4 5 6 7 8 9 10 11 | lsppratlem1 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ∨ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) ) |
| 31 | 20 29 30 | mpjaodan | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) |
| 32 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑊 ∈ LVec ) |
| 33 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑈 ∈ 𝑆 ) |
| 34 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑋 ∈ 𝑉 ) |
| 35 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑌 ∈ 𝑉 ) |
| 36 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 37 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
| 38 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 39 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) | |
| 40 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) | |
| 41 | 1 2 3 32 33 34 35 36 9 37 38 39 40 | lsppratlem2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |
| 42 | 31 41 | mpdan | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |