This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span of the empty set. (Contributed by Mario Carneiro, 5-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsn0.z | |- .0. = ( 0g ` W ) |
|
| lspsn0.n | |- N = ( LSpan ` W ) |
||
| Assertion | lsp0 | |- ( W e. LMod -> ( N ` (/) ) = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn0.z | |- .0. = ( 0g ` W ) |
|
| 2 | lspsn0.n | |- N = ( LSpan ` W ) |
|
| 3 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 4 | 1 3 | lsssn0 | |- ( W e. LMod -> { .0. } e. ( LSubSp ` W ) ) |
| 5 | 0ss | |- (/) C_ { .0. } |
|
| 6 | 3 2 | lspssp | |- ( ( W e. LMod /\ { .0. } e. ( LSubSp ` W ) /\ (/) C_ { .0. } ) -> ( N ` (/) ) C_ { .0. } ) |
| 7 | 5 6 | mp3an3 | |- ( ( W e. LMod /\ { .0. } e. ( LSubSp ` W ) ) -> ( N ` (/) ) C_ { .0. } ) |
| 8 | 4 7 | mpdan | |- ( W e. LMod -> ( N ` (/) ) C_ { .0. } ) |
| 9 | 0ss | |- (/) C_ ( Base ` W ) |
|
| 10 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 11 | 10 3 2 | lspcl | |- ( ( W e. LMod /\ (/) C_ ( Base ` W ) ) -> ( N ` (/) ) e. ( LSubSp ` W ) ) |
| 12 | 9 11 | mpan2 | |- ( W e. LMod -> ( N ` (/) ) e. ( LSubSp ` W ) ) |
| 13 | 1 3 | lss0ss | |- ( ( W e. LMod /\ ( N ` (/) ) e. ( LSubSp ` W ) ) -> { .0. } C_ ( N ` (/) ) ) |
| 14 | 12 13 | mpdan | |- ( W e. LMod -> { .0. } C_ ( N ` (/) ) ) |
| 15 | 8 14 | eqssd | |- ( W e. LMod -> ( N ` (/) ) = { .0. } ) |