This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span preserves subset ordering. ( spanss analog.) (Contributed by NM, 11-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspss.v | |- V = ( Base ` W ) |
|
| lspss.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspss | |- ( ( W e. LMod /\ U C_ V /\ T C_ U ) -> ( N ` T ) C_ ( N ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspss.v | |- V = ( Base ` W ) |
|
| 2 | lspss.n | |- N = ( LSpan ` W ) |
|
| 3 | simpl3 | |- ( ( ( W e. LMod /\ U C_ V /\ T C_ U ) /\ t e. ( LSubSp ` W ) ) -> T C_ U ) |
|
| 4 | sstr2 | |- ( T C_ U -> ( U C_ t -> T C_ t ) ) |
|
| 5 | 3 4 | syl | |- ( ( ( W e. LMod /\ U C_ V /\ T C_ U ) /\ t e. ( LSubSp ` W ) ) -> ( U C_ t -> T C_ t ) ) |
| 6 | 5 | ss2rabdv | |- ( ( W e. LMod /\ U C_ V /\ T C_ U ) -> { t e. ( LSubSp ` W ) | U C_ t } C_ { t e. ( LSubSp ` W ) | T C_ t } ) |
| 7 | intss | |- ( { t e. ( LSubSp ` W ) | U C_ t } C_ { t e. ( LSubSp ` W ) | T C_ t } -> |^| { t e. ( LSubSp ` W ) | T C_ t } C_ |^| { t e. ( LSubSp ` W ) | U C_ t } ) |
|
| 8 | 6 7 | syl | |- ( ( W e. LMod /\ U C_ V /\ T C_ U ) -> |^| { t e. ( LSubSp ` W ) | T C_ t } C_ |^| { t e. ( LSubSp ` W ) | U C_ t } ) |
| 9 | simp1 | |- ( ( W e. LMod /\ U C_ V /\ T C_ U ) -> W e. LMod ) |
|
| 10 | simp3 | |- ( ( W e. LMod /\ U C_ V /\ T C_ U ) -> T C_ U ) |
|
| 11 | simp2 | |- ( ( W e. LMod /\ U C_ V /\ T C_ U ) -> U C_ V ) |
|
| 12 | 10 11 | sstrd | |- ( ( W e. LMod /\ U C_ V /\ T C_ U ) -> T C_ V ) |
| 13 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 14 | 1 13 2 | lspval | |- ( ( W e. LMod /\ T C_ V ) -> ( N ` T ) = |^| { t e. ( LSubSp ` W ) | T C_ t } ) |
| 15 | 9 12 14 | syl2anc | |- ( ( W e. LMod /\ U C_ V /\ T C_ U ) -> ( N ` T ) = |^| { t e. ( LSubSp ` W ) | T C_ t } ) |
| 16 | 1 13 2 | lspval | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) = |^| { t e. ( LSubSp ` W ) | U C_ t } ) |
| 17 | 16 | 3adant3 | |- ( ( W e. LMod /\ U C_ V /\ T C_ U ) -> ( N ` U ) = |^| { t e. ( LSubSp ` W ) | U C_ t } ) |
| 18 | 8 15 17 | 3sstr4d | |- ( ( W e. LMod /\ U C_ V /\ T C_ U ) -> ( N ` T ) C_ ( N ` U ) ) |