This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsrex2v.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| ceqsrex2v.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| Assertion | ceqsrex2v | |- ( ( A e. C /\ B e. D ) -> ( E. x e. C E. y e. D ( ( x = A /\ y = B ) /\ ph ) <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsrex2v.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | ceqsrex2v.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | anass | |- ( ( ( x = A /\ y = B ) /\ ph ) <-> ( x = A /\ ( y = B /\ ph ) ) ) |
|
| 4 | 3 | rexbii | |- ( E. y e. D ( ( x = A /\ y = B ) /\ ph ) <-> E. y e. D ( x = A /\ ( y = B /\ ph ) ) ) |
| 5 | r19.42v | |- ( E. y e. D ( x = A /\ ( y = B /\ ph ) ) <-> ( x = A /\ E. y e. D ( y = B /\ ph ) ) ) |
|
| 6 | 4 5 | bitri | |- ( E. y e. D ( ( x = A /\ y = B ) /\ ph ) <-> ( x = A /\ E. y e. D ( y = B /\ ph ) ) ) |
| 7 | 6 | rexbii | |- ( E. x e. C E. y e. D ( ( x = A /\ y = B ) /\ ph ) <-> E. x e. C ( x = A /\ E. y e. D ( y = B /\ ph ) ) ) |
| 8 | 1 | anbi2d | |- ( x = A -> ( ( y = B /\ ph ) <-> ( y = B /\ ps ) ) ) |
| 9 | 8 | rexbidv | |- ( x = A -> ( E. y e. D ( y = B /\ ph ) <-> E. y e. D ( y = B /\ ps ) ) ) |
| 10 | 9 | ceqsrexv | |- ( A e. C -> ( E. x e. C ( x = A /\ E. y e. D ( y = B /\ ph ) ) <-> E. y e. D ( y = B /\ ps ) ) ) |
| 11 | 7 10 | bitrid | |- ( A e. C -> ( E. x e. C E. y e. D ( ( x = A /\ y = B ) /\ ph ) <-> E. y e. D ( y = B /\ ps ) ) ) |
| 12 | 2 | ceqsrexv | |- ( B e. D -> ( E. y e. D ( y = B /\ ps ) <-> ch ) ) |
| 13 | 11 12 | sylan9bb | |- ( ( A e. C /\ B e. D ) -> ( E. x e. C E. y e. D ( ( x = A /\ y = B ) /\ ph ) <-> ch ) ) |