This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval . (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmfval.v | |- B = ( Base ` G ) |
|
| lsmfval.a | |- .+ = ( +g ` G ) |
||
| lsmfval.s | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmvalx | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | |- B = ( Base ` G ) |
|
| 2 | lsmfval.a | |- .+ = ( +g ` G ) |
|
| 3 | lsmfval.s | |- .(+) = ( LSSum ` G ) |
|
| 4 | 1 2 3 | lsmfval | |- ( G e. V -> .(+) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) ) |
| 5 | 4 | oveqd | |- ( G e. V -> ( T .(+) U ) = ( T ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) U ) ) |
| 6 | 1 | fvexi | |- B e. _V |
| 7 | 6 | elpw2 | |- ( T e. ~P B <-> T C_ B ) |
| 8 | 6 | elpw2 | |- ( U e. ~P B <-> U C_ B ) |
| 9 | mpoexga | |- ( ( T e. ~P B /\ U e. ~P B ) -> ( x e. T , y e. U |-> ( x .+ y ) ) e. _V ) |
|
| 10 | rnexg | |- ( ( x e. T , y e. U |-> ( x .+ y ) ) e. _V -> ran ( x e. T , y e. U |-> ( x .+ y ) ) e. _V ) |
|
| 11 | 9 10 | syl | |- ( ( T e. ~P B /\ U e. ~P B ) -> ran ( x e. T , y e. U |-> ( x .+ y ) ) e. _V ) |
| 12 | mpoeq12 | |- ( ( t = T /\ u = U ) -> ( x e. t , y e. u |-> ( x .+ y ) ) = ( x e. T , y e. U |-> ( x .+ y ) ) ) |
|
| 13 | 12 | rneqd | |- ( ( t = T /\ u = U ) -> ran ( x e. t , y e. u |-> ( x .+ y ) ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) ) |
| 14 | eqid | |- ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) |
|
| 15 | 13 14 | ovmpoga | |- ( ( T e. ~P B /\ U e. ~P B /\ ran ( x e. T , y e. U |-> ( x .+ y ) ) e. _V ) -> ( T ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) ) |
| 16 | 11 15 | mpd3an3 | |- ( ( T e. ~P B /\ U e. ~P B ) -> ( T ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) ) |
| 17 | 7 8 16 | syl2anbr | |- ( ( T C_ B /\ U C_ B ) -> ( T ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) ) |
| 18 | 5 17 | sylan9eq | |- ( ( G e. V /\ ( T C_ B /\ U C_ B ) ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) ) |
| 19 | 18 | 3impb | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) ) |