This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of vector subtraction in subgroup sum. (Contributed by NM, 27-Apr-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmelvalm.m | |- .- = ( -g ` G ) |
|
| lsmelvalm.p | |- .(+) = ( LSSum ` G ) |
||
| lsmelvalm.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmelvalm.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| lsmelvalmi.x | |- ( ph -> X e. T ) |
||
| lsmelvalmi.y | |- ( ph -> Y e. U ) |
||
| Assertion | lsmelvalmi | |- ( ph -> ( X .- Y ) e. ( T .(+) U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmelvalm.m | |- .- = ( -g ` G ) |
|
| 2 | lsmelvalm.p | |- .(+) = ( LSSum ` G ) |
|
| 3 | lsmelvalm.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmelvalm.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | lsmelvalmi.x | |- ( ph -> X e. T ) |
|
| 6 | lsmelvalmi.y | |- ( ph -> Y e. U ) |
|
| 7 | eqidd | |- ( ph -> ( X .- Y ) = ( X .- Y ) ) |
|
| 8 | rspceov | |- ( ( X e. T /\ Y e. U /\ ( X .- Y ) = ( X .- Y ) ) -> E. x e. T E. y e. U ( X .- Y ) = ( x .- y ) ) |
|
| 9 | 5 6 7 8 | syl3anc | |- ( ph -> E. x e. T E. y e. U ( X .- Y ) = ( x .- y ) ) |
| 10 | 1 2 3 4 | lsmelvalm | |- ( ph -> ( ( X .- Y ) e. ( T .(+) U ) <-> E. x e. T E. y e. U ( X .- Y ) = ( x .- y ) ) ) |
| 11 | 9 10 | mpbird | |- ( ph -> ( X .- Y ) e. ( T .(+) U ) ) |