This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit points of the closure of a subset are the same as the limit points of the set in a T_1 space. (Contributed by Mario Carneiro, 26-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpcls.1 | |- X = U. J |
|
| Assertion | lpcls | |- ( ( J e. Fre /\ S C_ X ) -> ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( limPt ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpcls.1 | |- X = U. J |
|
| 2 | t1top | |- ( J e. Fre -> J e. Top ) |
|
| 3 | 1 | clsss3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 4 | 3 | ssdifssd | |- ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) \ { x } ) C_ X ) |
| 5 | 1 | clsss3 | |- ( ( J e. Top /\ ( ( ( cls ` J ) ` S ) \ { x } ) C_ X ) -> ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) C_ X ) |
| 6 | 4 5 | syldan | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) C_ X ) |
| 7 | 2 6 | sylan | |- ( ( J e. Fre /\ S C_ X ) -> ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) C_ X ) |
| 8 | 7 | sseld | |- ( ( J e. Fre /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) -> x e. X ) ) |
| 9 | ssdifss | |- ( S C_ X -> ( S \ { x } ) C_ X ) |
|
| 10 | 1 | clscld | |- ( ( J e. Top /\ ( S \ { x } ) C_ X ) -> ( ( cls ` J ) ` ( S \ { x } ) ) e. ( Clsd ` J ) ) |
| 11 | 2 9 10 | syl2an | |- ( ( J e. Fre /\ S C_ X ) -> ( ( cls ` J ) ` ( S \ { x } ) ) e. ( Clsd ` J ) ) |
| 12 | 11 | adantr | |- ( ( ( J e. Fre /\ S C_ X ) /\ x e. X ) -> ( ( cls ` J ) ` ( S \ { x } ) ) e. ( Clsd ` J ) ) |
| 13 | 1 | t1sncld | |- ( ( J e. Fre /\ x e. X ) -> { x } e. ( Clsd ` J ) ) |
| 14 | 13 | adantlr | |- ( ( ( J e. Fre /\ S C_ X ) /\ x e. X ) -> { x } e. ( Clsd ` J ) ) |
| 15 | uncld | |- ( ( { x } e. ( Clsd ` J ) /\ ( ( cls ` J ) ` ( S \ { x } ) ) e. ( Clsd ` J ) ) -> ( { x } u. ( ( cls ` J ) ` ( S \ { x } ) ) ) e. ( Clsd ` J ) ) |
|
| 16 | 14 12 15 | syl2anc | |- ( ( ( J e. Fre /\ S C_ X ) /\ x e. X ) -> ( { x } u. ( ( cls ` J ) ` ( S \ { x } ) ) ) e. ( Clsd ` J ) ) |
| 17 | 1 | sscls | |- ( ( J e. Top /\ ( S \ { x } ) C_ X ) -> ( S \ { x } ) C_ ( ( cls ` J ) ` ( S \ { x } ) ) ) |
| 18 | 2 9 17 | syl2an | |- ( ( J e. Fre /\ S C_ X ) -> ( S \ { x } ) C_ ( ( cls ` J ) ` ( S \ { x } ) ) ) |
| 19 | ssundif | |- ( S C_ ( { x } u. ( ( cls ` J ) ` ( S \ { x } ) ) ) <-> ( S \ { x } ) C_ ( ( cls ` J ) ` ( S \ { x } ) ) ) |
|
| 20 | 18 19 | sylibr | |- ( ( J e. Fre /\ S C_ X ) -> S C_ ( { x } u. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 21 | 20 | adantr | |- ( ( ( J e. Fre /\ S C_ X ) /\ x e. X ) -> S C_ ( { x } u. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 22 | 1 | clsss2 | |- ( ( ( { x } u. ( ( cls ` J ) ` ( S \ { x } ) ) ) e. ( Clsd ` J ) /\ S C_ ( { x } u. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) -> ( ( cls ` J ) ` S ) C_ ( { x } u. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 23 | 16 21 22 | syl2anc | |- ( ( ( J e. Fre /\ S C_ X ) /\ x e. X ) -> ( ( cls ` J ) ` S ) C_ ( { x } u. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 24 | ssundif | |- ( ( ( cls ` J ) ` S ) C_ ( { x } u. ( ( cls ` J ) ` ( S \ { x } ) ) ) <-> ( ( ( cls ` J ) ` S ) \ { x } ) C_ ( ( cls ` J ) ` ( S \ { x } ) ) ) |
|
| 25 | 23 24 | sylib | |- ( ( ( J e. Fre /\ S C_ X ) /\ x e. X ) -> ( ( ( cls ` J ) ` S ) \ { x } ) C_ ( ( cls ` J ) ` ( S \ { x } ) ) ) |
| 26 | 1 | clsss2 | |- ( ( ( ( cls ` J ) ` ( S \ { x } ) ) e. ( Clsd ` J ) /\ ( ( ( cls ` J ) ` S ) \ { x } ) C_ ( ( cls ` J ) ` ( S \ { x } ) ) ) -> ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) C_ ( ( cls ` J ) ` ( S \ { x } ) ) ) |
| 27 | 12 25 26 | syl2anc | |- ( ( ( J e. Fre /\ S C_ X ) /\ x e. X ) -> ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) C_ ( ( cls ` J ) ` ( S \ { x } ) ) ) |
| 28 | 27 | sseld | |- ( ( ( J e. Fre /\ S C_ X ) /\ x e. X ) -> ( x e. ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) -> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 29 | 28 | ex | |- ( ( J e. Fre /\ S C_ X ) -> ( x e. X -> ( x e. ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) -> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) ) |
| 30 | 29 | com23 | |- ( ( J e. Fre /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) -> ( x e. X -> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) ) |
| 31 | 8 30 | mpdd | |- ( ( J e. Fre /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) -> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 32 | 2 | adantr | |- ( ( J e. Fre /\ S C_ X ) -> J e. Top ) |
| 33 | 2 3 | sylan | |- ( ( J e. Fre /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 34 | 33 | ssdifssd | |- ( ( J e. Fre /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) \ { x } ) C_ X ) |
| 35 | 1 | sscls | |- ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 36 | 2 35 | sylan | |- ( ( J e. Fre /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 37 | 36 | ssdifd | |- ( ( J e. Fre /\ S C_ X ) -> ( S \ { x } ) C_ ( ( ( cls ` J ) ` S ) \ { x } ) ) |
| 38 | 1 | clsss | |- ( ( J e. Top /\ ( ( ( cls ` J ) ` S ) \ { x } ) C_ X /\ ( S \ { x } ) C_ ( ( ( cls ` J ) ` S ) \ { x } ) ) -> ( ( cls ` J ) ` ( S \ { x } ) ) C_ ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) ) |
| 39 | 32 34 37 38 | syl3anc | |- ( ( J e. Fre /\ S C_ X ) -> ( ( cls ` J ) ` ( S \ { x } ) ) C_ ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) ) |
| 40 | 39 | sseld | |- ( ( J e. Fre /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` ( S \ { x } ) ) -> x e. ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) ) ) |
| 41 | 31 40 | impbid | |- ( ( J e. Fre /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) <-> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 42 | 1 | islp | |- ( ( J e. Top /\ ( ( cls ` J ) ` S ) C_ X ) -> ( x e. ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) <-> x e. ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) ) ) |
| 43 | 3 42 | syldan | |- ( ( J e. Top /\ S C_ X ) -> ( x e. ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) <-> x e. ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) ) ) |
| 44 | 2 43 | sylan | |- ( ( J e. Fre /\ S C_ X ) -> ( x e. ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) <-> x e. ( ( cls ` J ) ` ( ( ( cls ` J ) ` S ) \ { x } ) ) ) ) |
| 45 | 1 | islp | |- ( ( J e. Top /\ S C_ X ) -> ( x e. ( ( limPt ` J ) ` S ) <-> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 46 | 2 45 | sylan | |- ( ( J e. Fre /\ S C_ X ) -> ( x e. ( ( limPt ` J ) ` S ) <-> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 47 | 41 44 46 | 3bitr4d | |- ( ( J e. Fre /\ S C_ X ) -> ( x e. ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) <-> x e. ( ( limPt ` J ) ` S ) ) ) |
| 48 | 47 | eqrdv | |- ( ( J e. Fre /\ S C_ X ) -> ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( limPt ` J ) ` S ) ) |