This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class P is a limit point of S ". (Contributed by NM, 10-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | islp | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | lpval | |- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) = { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } ) |
| 3 | 2 | eleq2d | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> P e. { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } ) ) |
| 4 | id | |- ( P e. ( ( cls ` J ) ` ( S \ { P } ) ) -> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) |
|
| 5 | id | |- ( x = P -> x = P ) |
|
| 6 | sneq | |- ( x = P -> { x } = { P } ) |
|
| 7 | 6 | difeq2d | |- ( x = P -> ( S \ { x } ) = ( S \ { P } ) ) |
| 8 | 7 | fveq2d | |- ( x = P -> ( ( cls ` J ) ` ( S \ { x } ) ) = ( ( cls ` J ) ` ( S \ { P } ) ) ) |
| 9 | 5 8 | eleq12d | |- ( x = P -> ( x e. ( ( cls ` J ) ` ( S \ { x } ) ) <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) ) |
| 10 | 4 9 | elab3 | |- ( P e. { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) |
| 11 | 3 10 | bitrdi | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) ) |