This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 3-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdivle | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A <_ B <-> ( ( log ` B ) / B ) <_ ( ( log ` A ) / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logdivlt | |- ( ( ( B e. RR /\ _e <_ B ) /\ ( A e. RR /\ _e <_ A ) ) -> ( B < A <-> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( B < A <-> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
| 3 | 2 | notbid | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( -. B < A <-> -. ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
| 4 | simpll | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> A e. RR ) |
|
| 5 | simprl | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> B e. RR ) |
|
| 6 | 4 5 | lenltd | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A <_ B <-> -. B < A ) ) |
| 7 | 0red | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> 0 e. RR ) |
|
| 8 | ere | |- _e e. RR |
|
| 9 | 8 | a1i | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> _e e. RR ) |
| 10 | epos | |- 0 < _e |
|
| 11 | 10 | a1i | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> 0 < _e ) |
| 12 | simprr | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> _e <_ B ) |
|
| 13 | 7 9 5 11 12 | ltletrd | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> 0 < B ) |
| 14 | 5 13 | elrpd | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> B e. RR+ ) |
| 15 | relogcl | |- ( B e. RR+ -> ( log ` B ) e. RR ) |
|
| 16 | 14 15 | syl | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( log ` B ) e. RR ) |
| 17 | 16 14 | rerpdivcld | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( ( log ` B ) / B ) e. RR ) |
| 18 | simplr | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> _e <_ A ) |
|
| 19 | 7 9 4 11 18 | ltletrd | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> 0 < A ) |
| 20 | 4 19 | elrpd | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> A e. RR+ ) |
| 21 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 22 | 20 21 | syl | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( log ` A ) e. RR ) |
| 23 | 22 20 | rerpdivcld | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( ( log ` A ) / A ) e. RR ) |
| 24 | 17 23 | lenltd | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( ( ( log ` B ) / B ) <_ ( ( log ` A ) / A ) <-> -. ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
| 25 | 3 6 24 | 3bitr4d | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A <_ B <-> ( ( log ` B ) / B ) <_ ( ( log ` A ) / A ) ) ) |