This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lower bound on the difference of logs. (Contributed by Mario Carneiro, 3-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdiflbnd | |- ( A e. RR+ -> ( 1 / ( A + 1 ) ) <_ ( ( log ` ( A + 1 ) ) - ( log ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 2 | rpge0 | |- ( A e. RR+ -> 0 <_ A ) |
|
| 3 | 1 2 | ge0p1rpd | |- ( A e. RR+ -> ( A + 1 ) e. RR+ ) |
| 4 | 3 | rprecred | |- ( A e. RR+ -> ( 1 / ( A + 1 ) ) e. RR ) |
| 5 | 1red | |- ( A e. RR+ -> 1 e. RR ) |
|
| 6 | 0le1 | |- 0 <_ 1 |
|
| 7 | 6 | a1i | |- ( A e. RR+ -> 0 <_ 1 ) |
| 8 | 5 3 7 | divge0d | |- ( A e. RR+ -> 0 <_ ( 1 / ( A + 1 ) ) ) |
| 9 | id | |- ( A e. RR+ -> A e. RR+ ) |
|
| 10 | 5 9 | ltaddrp2d | |- ( A e. RR+ -> 1 < ( A + 1 ) ) |
| 11 | 1 5 | readdcld | |- ( A e. RR+ -> ( A + 1 ) e. RR ) |
| 12 | 11 | recnd | |- ( A e. RR+ -> ( A + 1 ) e. CC ) |
| 13 | 12 | mulridd | |- ( A e. RR+ -> ( ( A + 1 ) x. 1 ) = ( A + 1 ) ) |
| 14 | 10 13 | breqtrrd | |- ( A e. RR+ -> 1 < ( ( A + 1 ) x. 1 ) ) |
| 15 | 5 5 3 | ltdivmuld | |- ( A e. RR+ -> ( ( 1 / ( A + 1 ) ) < 1 <-> 1 < ( ( A + 1 ) x. 1 ) ) ) |
| 16 | 14 15 | mpbird | |- ( A e. RR+ -> ( 1 / ( A + 1 ) ) < 1 ) |
| 17 | 4 8 16 | eflegeo | |- ( A e. RR+ -> ( exp ` ( 1 / ( A + 1 ) ) ) <_ ( 1 / ( 1 - ( 1 / ( A + 1 ) ) ) ) ) |
| 18 | 5 | recnd | |- ( A e. RR+ -> 1 e. CC ) |
| 19 | 3 | rpne0d | |- ( A e. RR+ -> ( A + 1 ) =/= 0 ) |
| 20 | 12 18 12 19 | divsubdird | |- ( A e. RR+ -> ( ( ( A + 1 ) - 1 ) / ( A + 1 ) ) = ( ( ( A + 1 ) / ( A + 1 ) ) - ( 1 / ( A + 1 ) ) ) ) |
| 21 | 1 | recnd | |- ( A e. RR+ -> A e. CC ) |
| 22 | 21 18 | pncand | |- ( A e. RR+ -> ( ( A + 1 ) - 1 ) = A ) |
| 23 | 22 | oveq1d | |- ( A e. RR+ -> ( ( ( A + 1 ) - 1 ) / ( A + 1 ) ) = ( A / ( A + 1 ) ) ) |
| 24 | 12 19 | dividd | |- ( A e. RR+ -> ( ( A + 1 ) / ( A + 1 ) ) = 1 ) |
| 25 | 24 | oveq1d | |- ( A e. RR+ -> ( ( ( A + 1 ) / ( A + 1 ) ) - ( 1 / ( A + 1 ) ) ) = ( 1 - ( 1 / ( A + 1 ) ) ) ) |
| 26 | 20 23 25 | 3eqtr3rd | |- ( A e. RR+ -> ( 1 - ( 1 / ( A + 1 ) ) ) = ( A / ( A + 1 ) ) ) |
| 27 | 26 | oveq2d | |- ( A e. RR+ -> ( 1 / ( 1 - ( 1 / ( A + 1 ) ) ) ) = ( 1 / ( A / ( A + 1 ) ) ) ) |
| 28 | rpne0 | |- ( A e. RR+ -> A =/= 0 ) |
|
| 29 | 21 12 28 19 | recdivd | |- ( A e. RR+ -> ( 1 / ( A / ( A + 1 ) ) ) = ( ( A + 1 ) / A ) ) |
| 30 | 27 29 | eqtrd | |- ( A e. RR+ -> ( 1 / ( 1 - ( 1 / ( A + 1 ) ) ) ) = ( ( A + 1 ) / A ) ) |
| 31 | 17 30 | breqtrd | |- ( A e. RR+ -> ( exp ` ( 1 / ( A + 1 ) ) ) <_ ( ( A + 1 ) / A ) ) |
| 32 | 4 | rpefcld | |- ( A e. RR+ -> ( exp ` ( 1 / ( A + 1 ) ) ) e. RR+ ) |
| 33 | 3 9 | rpdivcld | |- ( A e. RR+ -> ( ( A + 1 ) / A ) e. RR+ ) |
| 34 | 32 33 | logled | |- ( A e. RR+ -> ( ( exp ` ( 1 / ( A + 1 ) ) ) <_ ( ( A + 1 ) / A ) <-> ( log ` ( exp ` ( 1 / ( A + 1 ) ) ) ) <_ ( log ` ( ( A + 1 ) / A ) ) ) ) |
| 35 | 31 34 | mpbid | |- ( A e. RR+ -> ( log ` ( exp ` ( 1 / ( A + 1 ) ) ) ) <_ ( log ` ( ( A + 1 ) / A ) ) ) |
| 36 | 4 | relogefd | |- ( A e. RR+ -> ( log ` ( exp ` ( 1 / ( A + 1 ) ) ) ) = ( 1 / ( A + 1 ) ) ) |
| 37 | 3 9 | relogdivd | |- ( A e. RR+ -> ( log ` ( ( A + 1 ) / A ) ) = ( ( log ` ( A + 1 ) ) - ( log ` A ) ) ) |
| 38 | 35 36 37 | 3brtr3d | |- ( A e. RR+ -> ( 1 / ( A + 1 ) ) <_ ( ( log ` ( A + 1 ) ) - ( log ` A ) ) ) |