This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for logcn . (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| logcnlem.s | |- S = if ( A e. RR+ , A , ( abs ` ( Im ` A ) ) ) |
||
| logcnlem.t | |- T = ( ( abs ` A ) x. ( R / ( 1 + R ) ) ) |
||
| logcnlem.a | |- ( ph -> A e. D ) |
||
| logcnlem.r | |- ( ph -> R e. RR+ ) |
||
| Assertion | logcnlem2 | |- ( ph -> if ( S <_ T , S , T ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | logcnlem.s | |- S = if ( A e. RR+ , A , ( abs ` ( Im ` A ) ) ) |
|
| 3 | logcnlem.t | |- T = ( ( abs ` A ) x. ( R / ( 1 + R ) ) ) |
|
| 4 | logcnlem.a | |- ( ph -> A e. D ) |
|
| 5 | logcnlem.r | |- ( ph -> R e. RR+ ) |
|
| 6 | simpr | |- ( ( ph /\ A e. RR+ ) -> A e. RR+ ) |
|
| 7 | 1 | ellogdm | |- ( A e. D <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) ) |
| 8 | 7 | simplbi | |- ( A e. D -> A e. CC ) |
| 9 | 4 8 | syl | |- ( ph -> A e. CC ) |
| 10 | 9 | imcld | |- ( ph -> ( Im ` A ) e. RR ) |
| 11 | 10 | adantr | |- ( ( ph /\ -. A e. RR+ ) -> ( Im ` A ) e. RR ) |
| 12 | 11 | recnd | |- ( ( ph /\ -. A e. RR+ ) -> ( Im ` A ) e. CC ) |
| 13 | reim0b | |- ( A e. CC -> ( A e. RR <-> ( Im ` A ) = 0 ) ) |
|
| 14 | 9 13 | syl | |- ( ph -> ( A e. RR <-> ( Im ` A ) = 0 ) ) |
| 15 | 7 | simprbi | |- ( A e. D -> ( A e. RR -> A e. RR+ ) ) |
| 16 | 4 15 | syl | |- ( ph -> ( A e. RR -> A e. RR+ ) ) |
| 17 | 14 16 | sylbird | |- ( ph -> ( ( Im ` A ) = 0 -> A e. RR+ ) ) |
| 18 | 17 | necon3bd | |- ( ph -> ( -. A e. RR+ -> ( Im ` A ) =/= 0 ) ) |
| 19 | 18 | imp | |- ( ( ph /\ -. A e. RR+ ) -> ( Im ` A ) =/= 0 ) |
| 20 | 12 19 | absrpcld | |- ( ( ph /\ -. A e. RR+ ) -> ( abs ` ( Im ` A ) ) e. RR+ ) |
| 21 | 6 20 | ifclda | |- ( ph -> if ( A e. RR+ , A , ( abs ` ( Im ` A ) ) ) e. RR+ ) |
| 22 | 2 21 | eqeltrid | |- ( ph -> S e. RR+ ) |
| 23 | 1 | logdmn0 | |- ( A e. D -> A =/= 0 ) |
| 24 | 4 23 | syl | |- ( ph -> A =/= 0 ) |
| 25 | 9 24 | absrpcld | |- ( ph -> ( abs ` A ) e. RR+ ) |
| 26 | 1rp | |- 1 e. RR+ |
|
| 27 | rpaddcl | |- ( ( 1 e. RR+ /\ R e. RR+ ) -> ( 1 + R ) e. RR+ ) |
|
| 28 | 26 5 27 | sylancr | |- ( ph -> ( 1 + R ) e. RR+ ) |
| 29 | 5 28 | rpdivcld | |- ( ph -> ( R / ( 1 + R ) ) e. RR+ ) |
| 30 | 25 29 | rpmulcld | |- ( ph -> ( ( abs ` A ) x. ( R / ( 1 + R ) ) ) e. RR+ ) |
| 31 | 3 30 | eqeltrid | |- ( ph -> T e. RR+ ) |
| 32 | 22 31 | ifcld | |- ( ph -> if ( S <_ T , S , T ) e. RR+ ) |