This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for logcn . (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| logcnlem.s | ⊢ 𝑆 = if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | ||
| logcnlem.t | ⊢ 𝑇 = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) | ||
| logcnlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | ||
| logcnlem.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| Assertion | logcnlem2 | ⊢ ( 𝜑 → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | logcnlem.s | ⊢ 𝑆 = if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | |
| 3 | logcnlem.t | ⊢ 𝑇 = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) | |
| 4 | logcnlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| 5 | logcnlem.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ+ ) | |
| 7 | 1 | ellogdm | ⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
| 8 | 7 | simplbi | ⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ ) |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 10 | 9 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 13 | reim0b | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 14 | 9 13 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 15 | 7 | simprbi | ⊢ ( 𝐴 ∈ 𝐷 → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
| 16 | 4 15 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
| 17 | 14 16 | sylbird | ⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) = 0 → 𝐴 ∈ ℝ+ ) ) |
| 18 | 17 | necon3bd | ⊢ ( 𝜑 → ( ¬ 𝐴 ∈ ℝ+ → ( ℑ ‘ 𝐴 ) ≠ 0 ) ) |
| 19 | 18 | imp | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 20 | 12 19 | absrpcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 21 | 6 20 | ifclda | ⊢ ( 𝜑 → if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
| 22 | 2 21 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ ℝ+ ) |
| 23 | 1 | logdmn0 | ⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ≠ 0 ) |
| 24 | 4 23 | syl | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 25 | 9 24 | absrpcld | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 26 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 27 | rpaddcl | ⊢ ( ( 1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( 1 + 𝑅 ) ∈ ℝ+ ) | |
| 28 | 26 5 27 | sylancr | ⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℝ+ ) |
| 29 | 5 28 | rpdivcld | ⊢ ( 𝜑 → ( 𝑅 / ( 1 + 𝑅 ) ) ∈ ℝ+ ) |
| 30 | 25 29 | rpmulcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ∈ ℝ+ ) |
| 31 | 3 30 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 32 | 22 31 | ifcld | ⊢ ( 𝜑 → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ∈ ℝ+ ) |