This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvpncan | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
|
| 2 | hvsubval | |- ( ( ( A +h B ) e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h B ) = ( ( A +h B ) +h ( -u 1 .h B ) ) ) |
|
| 3 | 1 2 | sylancom | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h B ) = ( ( A +h B ) +h ( -u 1 .h B ) ) ) |
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | hvmulcl | |- ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) |
|
| 6 | 4 5 | mpan | |- ( B e. ~H -> ( -u 1 .h B ) e. ~H ) |
| 7 | 6 | ancli | |- ( B e. ~H -> ( B e. ~H /\ ( -u 1 .h B ) e. ~H ) ) |
| 8 | ax-hvass | |- ( ( A e. ~H /\ B e. ~H /\ ( -u 1 .h B ) e. ~H ) -> ( ( A +h B ) +h ( -u 1 .h B ) ) = ( A +h ( B +h ( -u 1 .h B ) ) ) ) |
|
| 9 | 8 | 3expb | |- ( ( A e. ~H /\ ( B e. ~H /\ ( -u 1 .h B ) e. ~H ) ) -> ( ( A +h B ) +h ( -u 1 .h B ) ) = ( A +h ( B +h ( -u 1 .h B ) ) ) ) |
| 10 | 7 9 | sylan2 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) +h ( -u 1 .h B ) ) = ( A +h ( B +h ( -u 1 .h B ) ) ) ) |
| 11 | hvnegid | |- ( B e. ~H -> ( B +h ( -u 1 .h B ) ) = 0h ) |
|
| 12 | 11 | oveq2d | |- ( B e. ~H -> ( A +h ( B +h ( -u 1 .h B ) ) ) = ( A +h 0h ) ) |
| 13 | ax-hvaddid | |- ( A e. ~H -> ( A +h 0h ) = A ) |
|
| 14 | 12 13 | sylan9eqr | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( B +h ( -u 1 .h B ) ) ) = A ) |
| 15 | 3 10 14 | 3eqtrd | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h B ) = A ) |