This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a linear Hilbert space operator at zero is zero. Remark in Beran p. 99. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnop0 | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) = 0ℎ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 3 | 1 2 | hvmulcli | ⊢ ( 1 ·ℎ 0ℎ ) ∈ ℋ |
| 4 | ax-hvaddid | ⊢ ( ( 1 ·ℎ 0ℎ ) ∈ ℋ → ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = ( 1 ·ℎ 0ℎ ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = ( 1 ·ℎ 0ℎ ) |
| 6 | ax-hvmulid | ⊢ ( 0ℎ ∈ ℋ → ( 1 ·ℎ 0ℎ ) = 0ℎ ) | |
| 7 | 2 6 | ax-mp | ⊢ ( 1 ·ℎ 0ℎ ) = 0ℎ |
| 8 | 5 7 | eqtri | ⊢ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = 0ℎ |
| 9 | 8 | fveq2i | ⊢ ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
| 10 | lnopl | ⊢ ( ( ( 𝑇 ∈ LinOp ∧ 1 ∈ ℂ ) ∧ ( 0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) | |
| 11 | 2 2 10 | mpanr12 | ⊢ ( ( 𝑇 ∈ LinOp ∧ 1 ∈ ℂ ) → ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
| 12 | 1 11 | mpan2 | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
| 13 | 9 12 | eqtr3id | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) = ( ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
| 14 | lnopf | ⊢ ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 15 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ 0ℎ ) ∈ ℋ ) | |
| 16 | 2 15 | mpan2 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ‘ 0ℎ ) ∈ ℋ ) |
| 17 | 14 16 | syl | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) ∈ ℋ ) |
| 18 | ax-hvmulid | ⊢ ( ( 𝑇 ‘ 0ℎ ) ∈ ℋ → ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑇 ∈ LinOp → ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝑇 ∈ LinOp → ( ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
| 21 | 13 20 | eqtrd | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) = ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
| 22 | 21 | oveq1d | ⊢ ( 𝑇 ∈ LinOp → ( ( 𝑇 ‘ 0ℎ ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = ( ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) −ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
| 23 | hvsubid | ⊢ ( ( 𝑇 ‘ 0ℎ ) ∈ ℋ → ( ( 𝑇 ‘ 0ℎ ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = 0ℎ ) | |
| 24 | 17 23 | syl | ⊢ ( 𝑇 ∈ LinOp → ( ( 𝑇 ‘ 0ℎ ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = 0ℎ ) |
| 25 | hvpncan | ⊢ ( ( ( 𝑇 ‘ 0ℎ ) ∈ ℋ ∧ ( 𝑇 ‘ 0ℎ ) ∈ ℋ ) → ( ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) ) | |
| 26 | 25 | anidms | ⊢ ( ( 𝑇 ‘ 0ℎ ) ∈ ℋ → ( ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) ) |
| 27 | 17 26 | syl | ⊢ ( 𝑇 ∈ LinOp → ( ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) ) |
| 28 | 22 24 27 | 3eqtr3rd | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) = 0ℎ ) |