This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic linearity property of a linear Hilbert space operator. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnopl | |- ( ( ( T e. LinOp /\ A e. CC ) /\ ( B e. ~H /\ C e. ~H ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellnop | |- ( T e. LinOp <-> ( T : ~H --> ~H /\ A. x e. CC A. y e. ~H A. z e. ~H ( T ` ( ( x .h y ) +h z ) ) = ( ( x .h ( T ` y ) ) +h ( T ` z ) ) ) ) |
|
| 2 | 1 | simprbi | |- ( T e. LinOp -> A. x e. CC A. y e. ~H A. z e. ~H ( T ` ( ( x .h y ) +h z ) ) = ( ( x .h ( T ` y ) ) +h ( T ` z ) ) ) |
| 3 | oveq1 | |- ( x = A -> ( x .h y ) = ( A .h y ) ) |
|
| 4 | 3 | fvoveq1d | |- ( x = A -> ( T ` ( ( x .h y ) +h z ) ) = ( T ` ( ( A .h y ) +h z ) ) ) |
| 5 | oveq1 | |- ( x = A -> ( x .h ( T ` y ) ) = ( A .h ( T ` y ) ) ) |
|
| 6 | 5 | oveq1d | |- ( x = A -> ( ( x .h ( T ` y ) ) +h ( T ` z ) ) = ( ( A .h ( T ` y ) ) +h ( T ` z ) ) ) |
| 7 | 4 6 | eqeq12d | |- ( x = A -> ( ( T ` ( ( x .h y ) +h z ) ) = ( ( x .h ( T ` y ) ) +h ( T ` z ) ) <-> ( T ` ( ( A .h y ) +h z ) ) = ( ( A .h ( T ` y ) ) +h ( T ` z ) ) ) ) |
| 8 | oveq2 | |- ( y = B -> ( A .h y ) = ( A .h B ) ) |
|
| 9 | 8 | fvoveq1d | |- ( y = B -> ( T ` ( ( A .h y ) +h z ) ) = ( T ` ( ( A .h B ) +h z ) ) ) |
| 10 | fveq2 | |- ( y = B -> ( T ` y ) = ( T ` B ) ) |
|
| 11 | 10 | oveq2d | |- ( y = B -> ( A .h ( T ` y ) ) = ( A .h ( T ` B ) ) ) |
| 12 | 11 | oveq1d | |- ( y = B -> ( ( A .h ( T ` y ) ) +h ( T ` z ) ) = ( ( A .h ( T ` B ) ) +h ( T ` z ) ) ) |
| 13 | 9 12 | eqeq12d | |- ( y = B -> ( ( T ` ( ( A .h y ) +h z ) ) = ( ( A .h ( T ` y ) ) +h ( T ` z ) ) <-> ( T ` ( ( A .h B ) +h z ) ) = ( ( A .h ( T ` B ) ) +h ( T ` z ) ) ) ) |
| 14 | oveq2 | |- ( z = C -> ( ( A .h B ) +h z ) = ( ( A .h B ) +h C ) ) |
|
| 15 | 14 | fveq2d | |- ( z = C -> ( T ` ( ( A .h B ) +h z ) ) = ( T ` ( ( A .h B ) +h C ) ) ) |
| 16 | fveq2 | |- ( z = C -> ( T ` z ) = ( T ` C ) ) |
|
| 17 | 16 | oveq2d | |- ( z = C -> ( ( A .h ( T ` B ) ) +h ( T ` z ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) |
| 18 | 15 17 | eqeq12d | |- ( z = C -> ( ( T ` ( ( A .h B ) +h z ) ) = ( ( A .h ( T ` B ) ) +h ( T ` z ) ) <-> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) ) |
| 19 | 7 13 18 | rspc3v | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A. x e. CC A. y e. ~H A. z e. ~H ( T ` ( ( x .h y ) +h z ) ) = ( ( x .h ( T ` y ) ) +h ( T ` z ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) ) |
| 20 | 2 19 | syl5 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T e. LinOp -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) ) |
| 21 | 20 | 3expb | |- ( ( A e. CC /\ ( B e. ~H /\ C e. ~H ) ) -> ( T e. LinOp -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) ) |
| 22 | 21 | impcom | |- ( ( T e. LinOp /\ ( A e. CC /\ ( B e. ~H /\ C e. ~H ) ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) |
| 23 | 22 | anassrs | |- ( ( ( T e. LinOp /\ A e. CC ) /\ ( B e. ~H /\ C e. ~H ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) |