This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmhmrnlss | |- ( F e. ( S LMHom T ) -> ran F e. ( LSubSp ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 2 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 3 | 1 2 | lmhmf | |- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 4 | ffn | |- ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) |
|
| 5 | fnima | |- ( F Fn ( Base ` S ) -> ( F " ( Base ` S ) ) = ran F ) |
|
| 6 | 3 4 5 | 3syl | |- ( F e. ( S LMHom T ) -> ( F " ( Base ` S ) ) = ran F ) |
| 7 | lmhmlmod1 | |- ( F e. ( S LMHom T ) -> S e. LMod ) |
|
| 8 | eqid | |- ( LSubSp ` S ) = ( LSubSp ` S ) |
|
| 9 | 1 8 | lss1 | |- ( S e. LMod -> ( Base ` S ) e. ( LSubSp ` S ) ) |
| 10 | 7 9 | syl | |- ( F e. ( S LMHom T ) -> ( Base ` S ) e. ( LSubSp ` S ) ) |
| 11 | eqid | |- ( LSubSp ` T ) = ( LSubSp ` T ) |
|
| 12 | 8 11 | lmhmima | |- ( ( F e. ( S LMHom T ) /\ ( Base ` S ) e. ( LSubSp ` S ) ) -> ( F " ( Base ` S ) ) e. ( LSubSp ` T ) ) |
| 13 | 10 12 | mpdan | |- ( F e. ( S LMHom T ) -> ( F " ( Base ` S ) ) e. ( LSubSp ` T ) ) |
| 14 | 6 13 | eqeltrrd | |- ( F e. ( S LMHom T ) -> ran F e. ( LSubSp ` T ) ) |