This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atmod.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atmod.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atmod.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| atmod.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| atmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | llnmod2i2 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∨ 𝑌 ) = ( 𝑋 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atmod.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atmod.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atmod.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | atmod.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | atmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | simp11 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝐾 ∈ HL ) | |
| 7 | 6 | hllatd | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝐾 ∈ Lat ) |
| 8 | simp13 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ∈ 𝐵 ) | |
| 9 | simp2l | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑃 ∈ 𝐴 ) | |
| 10 | simp2r | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑄 ∈ 𝐴 ) | |
| 11 | 1 3 5 | hlatjcl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 12 | 6 9 10 11 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 13 | simp12 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) | |
| 14 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐵 ) |
| 15 | 7 12 13 14 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐵 ) |
| 16 | 1 3 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐵 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∨ 𝑌 ) ) |
| 17 | 7 8 15 16 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∨ 𝑌 ) ) |
| 18 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 19 | 7 8 12 18 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 20 | 1 4 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
| 21 | 7 13 19 20 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
| 22 | 1 3 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) = ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 23 | 7 12 8 22 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) = ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 25 | simp3 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ≤ 𝑋 ) | |
| 26 | 1 2 3 4 5 | llnmod1i2 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
| 27 | 6 8 13 9 10 25 26 | syl321anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
| 28 | 21 24 27 | 3eqtr4d | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) ) = ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
| 29 | 1 4 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) |
| 30 | 7 13 12 29 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) |
| 31 | 30 | oveq1d | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∨ 𝑌 ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∨ 𝑌 ) ) |
| 32 | 17 28 31 | 3eqtr4rd | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∨ 𝑌 ) = ( 𝑋 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) ) ) |