This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the superior limit. (Contributed by NM, 26-Oct-2005) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limsupcl | |- ( F e. V -> ( limsup ` F ) e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( F e. V -> F e. _V ) |
|
| 2 | df-limsup | |- limsup = ( f e. _V |-> inf ( ran ( k e. RR |-> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
|
| 3 | eqid | |- ( k e. RR |-> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 4 | inss2 | |- ( ( f " ( k [,) +oo ) ) i^i RR* ) C_ RR* |
|
| 5 | supxrcl | |- ( ( ( f " ( k [,) +oo ) ) i^i RR* ) C_ RR* -> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
|
| 6 | 4 5 | mp1i | |- ( k e. RR -> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 7 | 3 6 | fmpti | |- ( k e. RR |-> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) : RR --> RR* |
| 8 | frn | |- ( ( k e. RR |-> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) : RR --> RR* -> ran ( k e. RR |-> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* ) |
|
| 9 | 7 8 | ax-mp | |- ran ( k e. RR |-> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* |
| 10 | infxrcl | |- ( ran ( k e. RR |-> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* -> inf ( ran ( k e. RR |-> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) e. RR* ) |
|
| 11 | 9 10 | mp1i | |- ( f e. _V -> inf ( ran ( k e. RR |-> sup ( ( ( f " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) e. RR* ) |
| 12 | 2 11 | fmpti | |- limsup : _V --> RR* |
| 13 | 12 | ffvelcdmi | |- ( F e. _V -> ( limsup ` F ) e. RR* ) |
| 14 | 1 13 | syl | |- ( F e. V -> ( limsup ` F ) e. RR* ) |