This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of Enderton p. 194. (Contributed by NM, 3-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suc11 | |- ( ( A e. On /\ B e. On ) -> ( suc A = suc B <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( A e. On -> Ord A ) |
|
| 2 | ordn2lp | |- ( Ord A -> -. ( A e. B /\ B e. A ) ) |
|
| 3 | pm3.13 | |- ( -. ( A e. B /\ B e. A ) -> ( -. A e. B \/ -. B e. A ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( A e. On -> ( -. A e. B \/ -. B e. A ) ) |
| 5 | 4 | adantr | |- ( ( A e. On /\ B e. On ) -> ( -. A e. B \/ -. B e. A ) ) |
| 6 | eqimss | |- ( suc A = suc B -> suc A C_ suc B ) |
|
| 7 | sucssel | |- ( A e. On -> ( suc A C_ suc B -> A e. suc B ) ) |
|
| 8 | 6 7 | syl5 | |- ( A e. On -> ( suc A = suc B -> A e. suc B ) ) |
| 9 | elsuci | |- ( A e. suc B -> ( A e. B \/ A = B ) ) |
|
| 10 | 9 | ord | |- ( A e. suc B -> ( -. A e. B -> A = B ) ) |
| 11 | 10 | com12 | |- ( -. A e. B -> ( A e. suc B -> A = B ) ) |
| 12 | 8 11 | syl9 | |- ( A e. On -> ( -. A e. B -> ( suc A = suc B -> A = B ) ) ) |
| 13 | eqimss2 | |- ( suc A = suc B -> suc B C_ suc A ) |
|
| 14 | sucssel | |- ( B e. On -> ( suc B C_ suc A -> B e. suc A ) ) |
|
| 15 | 13 14 | syl5 | |- ( B e. On -> ( suc A = suc B -> B e. suc A ) ) |
| 16 | elsuci | |- ( B e. suc A -> ( B e. A \/ B = A ) ) |
|
| 17 | 16 | ord | |- ( B e. suc A -> ( -. B e. A -> B = A ) ) |
| 18 | eqcom | |- ( B = A <-> A = B ) |
|
| 19 | 17 18 | imbitrdi | |- ( B e. suc A -> ( -. B e. A -> A = B ) ) |
| 20 | 19 | com12 | |- ( -. B e. A -> ( B e. suc A -> A = B ) ) |
| 21 | 15 20 | syl9 | |- ( B e. On -> ( -. B e. A -> ( suc A = suc B -> A = B ) ) ) |
| 22 | 12 21 | jaao | |- ( ( A e. On /\ B e. On ) -> ( ( -. A e. B \/ -. B e. A ) -> ( suc A = suc B -> A = B ) ) ) |
| 23 | 5 22 | mpd | |- ( ( A e. On /\ B e. On ) -> ( suc A = suc B -> A = B ) ) |
| 24 | suceq | |- ( A = B -> suc A = suc B ) |
|
| 25 | 23 24 | impbid1 | |- ( ( A e. On /\ B e. On ) -> ( suc A = suc B <-> A = B ) ) |