This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for limcflf . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcflf.f | |- ( ph -> F : A --> CC ) |
|
| limcflf.a | |- ( ph -> A C_ CC ) |
||
| limcflf.b | |- ( ph -> B e. ( ( limPt ` K ) ` A ) ) |
||
| limcflf.k | |- K = ( TopOpen ` CCfld ) |
||
| limcflf.c | |- C = ( A \ { B } ) |
||
| limcflf.l | |- L = ( ( ( nei ` K ) ` { B } ) |`t C ) |
||
| Assertion | limcflflem | |- ( ph -> L e. ( Fil ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcflf.f | |- ( ph -> F : A --> CC ) |
|
| 2 | limcflf.a | |- ( ph -> A C_ CC ) |
|
| 3 | limcflf.b | |- ( ph -> B e. ( ( limPt ` K ) ` A ) ) |
|
| 4 | limcflf.k | |- K = ( TopOpen ` CCfld ) |
|
| 5 | limcflf.c | |- C = ( A \ { B } ) |
|
| 6 | limcflf.l | |- L = ( ( ( nei ` K ) ` { B } ) |`t C ) |
|
| 7 | 4 | cnfldtop | |- K e. Top |
| 8 | 4 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 9 | 8 | toponunii | |- CC = U. K |
| 10 | 9 | islp | |- ( ( K e. Top /\ A C_ CC ) -> ( B e. ( ( limPt ` K ) ` A ) <-> B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) ) |
| 11 | 7 2 10 | sylancr | |- ( ph -> ( B e. ( ( limPt ` K ) ` A ) <-> B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) ) |
| 12 | 3 11 | mpbid | |- ( ph -> B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) |
| 13 | 5 | fveq2i | |- ( ( cls ` K ) ` C ) = ( ( cls ` K ) ` ( A \ { B } ) ) |
| 14 | 12 13 | eleqtrrdi | |- ( ph -> B e. ( ( cls ` K ) ` C ) ) |
| 15 | difss | |- ( A \ { B } ) C_ A |
|
| 16 | 5 15 | eqsstri | |- C C_ A |
| 17 | 16 2 | sstrid | |- ( ph -> C C_ CC ) |
| 18 | 9 | lpss | |- ( ( K e. Top /\ A C_ CC ) -> ( ( limPt ` K ) ` A ) C_ CC ) |
| 19 | 7 2 18 | sylancr | |- ( ph -> ( ( limPt ` K ) ` A ) C_ CC ) |
| 20 | 19 3 | sseldd | |- ( ph -> B e. CC ) |
| 21 | trnei | |- ( ( K e. ( TopOn ` CC ) /\ C C_ CC /\ B e. CC ) -> ( B e. ( ( cls ` K ) ` C ) <-> ( ( ( nei ` K ) ` { B } ) |`t C ) e. ( Fil ` C ) ) ) |
|
| 22 | 8 17 20 21 | mp3an2i | |- ( ph -> ( B e. ( ( cls ` K ) ` C ) <-> ( ( ( nei ` K ) ` { B } ) |`t C ) e. ( Fil ` C ) ) ) |
| 23 | 14 22 | mpbid | |- ( ph -> ( ( ( nei ` K ) ` { B } ) |`t C ) e. ( Fil ` C ) ) |
| 24 | 6 23 | eqeltrid | |- ( ph -> L e. ( Fil ` C ) ) |