This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014) (Proof shortened by Mario Carneiro, 1-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elicc4 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) <-> ( C e. RR* /\ A <_ C /\ C <_ B ) ) ) |
|
| 2 | 3anass | |- ( ( C e. RR* /\ A <_ C /\ C <_ B ) <-> ( C e. RR* /\ ( A <_ C /\ C <_ B ) ) ) |
|
| 3 | 1 2 | bitrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) <-> ( C e. RR* /\ ( A <_ C /\ C <_ B ) ) ) ) |
| 4 | 3 | baibd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
| 5 | 4 | 3impa | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |