This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the limit predicate. C is the limit of the function F at B if the function G , formed by adding B to the domain of F and setting it to C , is continuous at B . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcval.j | |- J = ( K |`t ( A u. { B } ) ) |
|
| limcval.k | |- K = ( TopOpen ` CCfld ) |
||
| ellimc.g | |- G = ( z e. ( A u. { B } ) |-> if ( z = B , C , ( F ` z ) ) ) |
||
| ellimc.f | |- ( ph -> F : A --> CC ) |
||
| ellimc.a | |- ( ph -> A C_ CC ) |
||
| ellimc.b | |- ( ph -> B e. CC ) |
||
| Assertion | ellimc | |- ( ph -> ( C e. ( F limCC B ) <-> G e. ( ( J CnP K ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcval.j | |- J = ( K |`t ( A u. { B } ) ) |
|
| 2 | limcval.k | |- K = ( TopOpen ` CCfld ) |
|
| 3 | ellimc.g | |- G = ( z e. ( A u. { B } ) |-> if ( z = B , C , ( F ` z ) ) ) |
|
| 4 | ellimc.f | |- ( ph -> F : A --> CC ) |
|
| 5 | ellimc.a | |- ( ph -> A C_ CC ) |
|
| 6 | ellimc.b | |- ( ph -> B e. CC ) |
|
| 7 | 1 2 | limcfval | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( ( F limCC B ) = { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } /\ ( F limCC B ) C_ CC ) ) |
| 8 | 4 5 6 7 | syl3anc | |- ( ph -> ( ( F limCC B ) = { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } /\ ( F limCC B ) C_ CC ) ) |
| 9 | 8 | simpld | |- ( ph -> ( F limCC B ) = { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } ) |
| 10 | 9 | eleq2d | |- ( ph -> ( C e. ( F limCC B ) <-> C e. { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } ) ) |
| 11 | 1 2 3 | limcvallem | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( G e. ( ( J CnP K ) ` B ) -> C e. CC ) ) |
| 12 | 4 5 6 11 | syl3anc | |- ( ph -> ( G e. ( ( J CnP K ) ` B ) -> C e. CC ) ) |
| 13 | ifeq1 | |- ( y = C -> if ( z = B , y , ( F ` z ) ) = if ( z = B , C , ( F ` z ) ) ) |
|
| 14 | 13 | mpteq2dv | |- ( y = C -> ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) = ( z e. ( A u. { B } ) |-> if ( z = B , C , ( F ` z ) ) ) ) |
| 15 | 14 3 | eqtr4di | |- ( y = C -> ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) = G ) |
| 16 | 15 | eleq1d | |- ( y = C -> ( ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) <-> G e. ( ( J CnP K ) ` B ) ) ) |
| 17 | 16 | elab3g | |- ( ( G e. ( ( J CnP K ) ` B ) -> C e. CC ) -> ( C e. { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } <-> G e. ( ( J CnP K ) ` B ) ) ) |
| 18 | 12 17 | syl | |- ( ph -> ( C e. { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } <-> G e. ( ( J CnP K ) ` B ) ) ) |
| 19 | 10 18 | bitrd | |- ( ph -> ( C e. ( F limCC B ) <-> G e. ( ( J CnP K ) ` B ) ) ) |