This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph with one vertex has no edges. (Contributed by AV, 18-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 2-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr1vr | |- ( ( A e. X /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruhgr | |- ( G e. USGraph -> G e. UHGraph ) |
|
| 2 | 1 | adantl | |- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> G e. UHGraph ) |
| 3 | fveq2 | |- ( ( Vtx ` G ) = { A } -> ( # ` ( Vtx ` G ) ) = ( # ` { A } ) ) |
|
| 4 | hashsng | |- ( A e. X -> ( # ` { A } ) = 1 ) |
|
| 5 | 3 4 | sylan9eqr | |- ( ( A e. X /\ ( Vtx ` G ) = { A } ) -> ( # ` ( Vtx ` G ) ) = 1 ) |
| 6 | 5 | adantr | |- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( # ` ( Vtx ` G ) ) = 1 ) |
| 7 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 8 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 9 | 7 8 | usgrislfuspgr | |- ( G e. USGraph <-> ( G e. USPGraph /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) ) |
| 10 | 9 | simprbi | |- ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 11 | 10 | adantl | |- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 12 | eqid | |- { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } = { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } |
|
| 13 | 7 8 12 | lfuhgr1v0e | |- ( ( G e. UHGraph /\ ( # ` ( Vtx ` G ) ) = 1 /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) -> ( Edg ` G ) = (/) ) |
| 14 | 2 6 11 13 | syl3anc | |- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( Edg ` G ) = (/) ) |
| 15 | uhgriedg0edg0 | |- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
|
| 16 | 1 15 | syl | |- ( G e. USGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 17 | 16 | adantl | |- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 18 | 14 17 | mpbid | |- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( iEdg ` G ) = (/) ) |
| 19 | 18 | ex | |- ( ( A e. X /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |