This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledivdiv | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A / B ) <_ ( C / D ) <-> ( D / C ) <_ ( B / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( B e. RR /\ 0 < B ) -> B e. RR ) |
|
| 2 | gt0ne0 | |- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
|
| 3 | 1 2 | jca | |- ( ( B e. RR /\ 0 < B ) -> ( B e. RR /\ B =/= 0 ) ) |
| 4 | redivcl | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR ) |
|
| 5 | 4 | 3expb | |- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) ) -> ( A / B ) e. RR ) |
| 6 | 3 5 | sylan2 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( A / B ) e. RR ) |
| 7 | 6 | adantlr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A / B ) e. RR ) |
| 8 | divgt0 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A / B ) ) |
|
| 9 | 7 8 | jca | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) e. RR /\ 0 < ( A / B ) ) ) |
| 10 | simpl | |- ( ( D e. RR /\ 0 < D ) -> D e. RR ) |
|
| 11 | gt0ne0 | |- ( ( D e. RR /\ 0 < D ) -> D =/= 0 ) |
|
| 12 | 10 11 | jca | |- ( ( D e. RR /\ 0 < D ) -> ( D e. RR /\ D =/= 0 ) ) |
| 13 | redivcl | |- ( ( C e. RR /\ D e. RR /\ D =/= 0 ) -> ( C / D ) e. RR ) |
|
| 14 | 13 | 3expb | |- ( ( C e. RR /\ ( D e. RR /\ D =/= 0 ) ) -> ( C / D ) e. RR ) |
| 15 | 12 14 | sylan2 | |- ( ( C e. RR /\ ( D e. RR /\ 0 < D ) ) -> ( C / D ) e. RR ) |
| 16 | 15 | adantlr | |- ( ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) -> ( C / D ) e. RR ) |
| 17 | divgt0 | |- ( ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) -> 0 < ( C / D ) ) |
|
| 18 | 16 17 | jca | |- ( ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) -> ( ( C / D ) e. RR /\ 0 < ( C / D ) ) ) |
| 19 | lerec | |- ( ( ( ( A / B ) e. RR /\ 0 < ( A / B ) ) /\ ( ( C / D ) e. RR /\ 0 < ( C / D ) ) ) -> ( ( A / B ) <_ ( C / D ) <-> ( 1 / ( C / D ) ) <_ ( 1 / ( A / B ) ) ) ) |
|
| 20 | 9 18 19 | syl2an | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A / B ) <_ ( C / D ) <-> ( 1 / ( C / D ) ) <_ ( 1 / ( A / B ) ) ) ) |
| 21 | recn | |- ( C e. RR -> C e. CC ) |
|
| 22 | 21 | adantr | |- ( ( C e. RR /\ 0 < C ) -> C e. CC ) |
| 23 | gt0ne0 | |- ( ( C e. RR /\ 0 < C ) -> C =/= 0 ) |
|
| 24 | 22 23 | jca | |- ( ( C e. RR /\ 0 < C ) -> ( C e. CC /\ C =/= 0 ) ) |
| 25 | recn | |- ( D e. RR -> D e. CC ) |
|
| 26 | 25 | adantr | |- ( ( D e. RR /\ 0 < D ) -> D e. CC ) |
| 27 | 26 11 | jca | |- ( ( D e. RR /\ 0 < D ) -> ( D e. CC /\ D =/= 0 ) ) |
| 28 | recdiv | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( 1 / ( C / D ) ) = ( D / C ) ) |
|
| 29 | 24 27 28 | syl2an | |- ( ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) -> ( 1 / ( C / D ) ) = ( D / C ) ) |
| 30 | recn | |- ( A e. RR -> A e. CC ) |
|
| 31 | 30 | adantr | |- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
| 32 | gt0ne0 | |- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
|
| 33 | 31 32 | jca | |- ( ( A e. RR /\ 0 < A ) -> ( A e. CC /\ A =/= 0 ) ) |
| 34 | recn | |- ( B e. RR -> B e. CC ) |
|
| 35 | 34 | adantr | |- ( ( B e. RR /\ 0 < B ) -> B e. CC ) |
| 36 | 35 2 | jca | |- ( ( B e. RR /\ 0 < B ) -> ( B e. CC /\ B =/= 0 ) ) |
| 37 | recdiv | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 / ( A / B ) ) = ( B / A ) ) |
|
| 38 | 33 36 37 | syl2an | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 / ( A / B ) ) = ( B / A ) ) |
| 39 | 29 38 | breqan12rd | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( 1 / ( C / D ) ) <_ ( 1 / ( A / B ) ) <-> ( D / C ) <_ ( B / A ) ) ) |
| 40 | 20 39 | bitrd | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A / B ) <_ ( C / D ) <-> ( D / C ) <_ ( B / A ) ) ) |