This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledivp1 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A / ( B + 1 ) ) x. B ) <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> B e. RR ) |
|
| 2 | peano2re | |- ( B e. RR -> ( B + 1 ) e. RR ) |
|
| 3 | 2 | ad2antrl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B + 1 ) e. RR ) |
| 4 | simpll | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> A e. RR ) |
|
| 5 | ltp1 | |- ( B e. RR -> B < ( B + 1 ) ) |
|
| 6 | 0re | |- 0 e. RR |
|
| 7 | lelttr | |- ( ( 0 e. RR /\ B e. RR /\ ( B + 1 ) e. RR ) -> ( ( 0 <_ B /\ B < ( B + 1 ) ) -> 0 < ( B + 1 ) ) ) |
|
| 8 | 6 7 | mp3an1 | |- ( ( B e. RR /\ ( B + 1 ) e. RR ) -> ( ( 0 <_ B /\ B < ( B + 1 ) ) -> 0 < ( B + 1 ) ) ) |
| 9 | 2 8 | mpdan | |- ( B e. RR -> ( ( 0 <_ B /\ B < ( B + 1 ) ) -> 0 < ( B + 1 ) ) ) |
| 10 | 5 9 | mpan2d | |- ( B e. RR -> ( 0 <_ B -> 0 < ( B + 1 ) ) ) |
| 11 | 10 | imp | |- ( ( B e. RR /\ 0 <_ B ) -> 0 < ( B + 1 ) ) |
| 12 | 11 | gt0ne0d | |- ( ( B e. RR /\ 0 <_ B ) -> ( B + 1 ) =/= 0 ) |
| 13 | 12 | adantl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B + 1 ) =/= 0 ) |
| 14 | 4 3 13 | redivcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A / ( B + 1 ) ) e. RR ) |
| 15 | 2 | adantr | |- ( ( B e. RR /\ 0 <_ B ) -> ( B + 1 ) e. RR ) |
| 16 | 15 11 | jca | |- ( ( B e. RR /\ 0 <_ B ) -> ( ( B + 1 ) e. RR /\ 0 < ( B + 1 ) ) ) |
| 17 | divge0 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( ( B + 1 ) e. RR /\ 0 < ( B + 1 ) ) ) -> 0 <_ ( A / ( B + 1 ) ) ) |
|
| 18 | 16 17 | sylan2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> 0 <_ ( A / ( B + 1 ) ) ) |
| 19 | 14 18 | jca | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A / ( B + 1 ) ) e. RR /\ 0 <_ ( A / ( B + 1 ) ) ) ) |
| 20 | lep1 | |- ( B e. RR -> B <_ ( B + 1 ) ) |
|
| 21 | 20 | ad2antrl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> B <_ ( B + 1 ) ) |
| 22 | lemul2a | |- ( ( ( B e. RR /\ ( B + 1 ) e. RR /\ ( ( A / ( B + 1 ) ) e. RR /\ 0 <_ ( A / ( B + 1 ) ) ) ) /\ B <_ ( B + 1 ) ) -> ( ( A / ( B + 1 ) ) x. B ) <_ ( ( A / ( B + 1 ) ) x. ( B + 1 ) ) ) |
|
| 23 | 1 3 19 21 22 | syl31anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A / ( B + 1 ) ) x. B ) <_ ( ( A / ( B + 1 ) ) x. ( B + 1 ) ) ) |
| 24 | recn | |- ( A e. RR -> A e. CC ) |
|
| 25 | 24 | ad2antrr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> A e. CC ) |
| 26 | 2 | recnd | |- ( B e. RR -> ( B + 1 ) e. CC ) |
| 27 | 26 | ad2antrl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B + 1 ) e. CC ) |
| 28 | 25 27 13 | divcan1d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A / ( B + 1 ) ) x. ( B + 1 ) ) = A ) |
| 29 | 23 28 | breqtrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A / ( B + 1 ) ) x. B ) <_ A ) |