This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | squeeze0 | |- ( ( A e. RR /\ 0 <_ A /\ A. x e. RR ( 0 < x -> A < x ) ) -> A = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | leloe | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 4 | breq2 | |- ( x = A -> ( 0 < x <-> 0 < A ) ) |
|
| 5 | breq2 | |- ( x = A -> ( A < x <-> A < A ) ) |
|
| 6 | 4 5 | imbi12d | |- ( x = A -> ( ( 0 < x -> A < x ) <-> ( 0 < A -> A < A ) ) ) |
| 7 | 6 | rspcv | |- ( A e. RR -> ( A. x e. RR ( 0 < x -> A < x ) -> ( 0 < A -> A < A ) ) ) |
| 8 | ltnr | |- ( A e. RR -> -. A < A ) |
|
| 9 | 8 | pm2.21d | |- ( A e. RR -> ( A < A -> A = 0 ) ) |
| 10 | 9 | com12 | |- ( A < A -> ( A e. RR -> A = 0 ) ) |
| 11 | 10 | imim2i | |- ( ( 0 < A -> A < A ) -> ( 0 < A -> ( A e. RR -> A = 0 ) ) ) |
| 12 | 11 | com13 | |- ( A e. RR -> ( 0 < A -> ( ( 0 < A -> A < A ) -> A = 0 ) ) ) |
| 13 | 7 12 | syl5d | |- ( A e. RR -> ( 0 < A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) |
| 14 | ax-1 | |- ( A = 0 -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) |
|
| 15 | 14 | eqcoms | |- ( 0 = A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) |
| 16 | 15 | a1i | |- ( A e. RR -> ( 0 = A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) |
| 17 | 13 16 | jaod | |- ( A e. RR -> ( ( 0 < A \/ 0 = A ) -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) |
| 18 | 3 17 | sylbid | |- ( A e. RR -> ( 0 <_ A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) |
| 19 | 18 | 3imp | |- ( ( A e. RR /\ 0 <_ A /\ A. x e. RR ( 0 < x -> A < x ) ) -> A = 0 ) |