This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledivp1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) · 𝐵 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 2 | peano2re | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) | |
| 3 | 2 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 + 1 ) ∈ ℝ ) |
| 4 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 5 | ltp1 | ⊢ ( 𝐵 ∈ ℝ → 𝐵 < ( 𝐵 + 1 ) ) | |
| 6 | 0re | ⊢ 0 ∈ ℝ | |
| 7 | lelttr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 0 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 0 < ( 𝐵 + 1 ) ) ) | |
| 8 | 6 7 | mp3an1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 0 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 0 < ( 𝐵 + 1 ) ) ) |
| 9 | 2 8 | mpdan | ⊢ ( 𝐵 ∈ ℝ → ( ( 0 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 0 < ( 𝐵 + 1 ) ) ) |
| 10 | 5 9 | mpan2d | ⊢ ( 𝐵 ∈ ℝ → ( 0 ≤ 𝐵 → 0 < ( 𝐵 + 1 ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → 0 < ( 𝐵 + 1 ) ) |
| 12 | 11 | gt0ne0d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( 𝐵 + 1 ) ≠ 0 ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 + 1 ) ≠ 0 ) |
| 14 | 4 3 13 | redivcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 / ( 𝐵 + 1 ) ) ∈ ℝ ) |
| 15 | 2 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( 𝐵 + 1 ) ∈ ℝ ) |
| 16 | 15 11 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐵 + 1 ) ∈ ℝ ∧ 0 < ( 𝐵 + 1 ) ) ) |
| 17 | divge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( ( 𝐵 + 1 ) ∈ ℝ ∧ 0 < ( 𝐵 + 1 ) ) ) → 0 ≤ ( 𝐴 / ( 𝐵 + 1 ) ) ) | |
| 18 | 16 17 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 / ( 𝐵 + 1 ) ) ) |
| 19 | 14 18 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / ( 𝐵 + 1 ) ) ) ) |
| 20 | lep1 | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ ( 𝐵 + 1 ) ) | |
| 21 | 20 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐵 ≤ ( 𝐵 + 1 ) ) |
| 22 | lemul2a | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ∧ ( ( 𝐴 / ( 𝐵 + 1 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / ( 𝐵 + 1 ) ) ) ) ∧ 𝐵 ≤ ( 𝐵 + 1 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) · 𝐵 ) ≤ ( ( 𝐴 / ( 𝐵 + 1 ) ) · ( 𝐵 + 1 ) ) ) | |
| 23 | 1 3 19 21 22 | syl31anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) · 𝐵 ) ≤ ( ( 𝐴 / ( 𝐵 + 1 ) ) · ( 𝐵 + 1 ) ) ) |
| 24 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 26 | 2 | recnd | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℂ ) |
| 27 | 26 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 + 1 ) ∈ ℂ ) |
| 28 | 25 27 13 | divcan1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) · ( 𝐵 + 1 ) ) = 𝐴 ) |
| 29 | 23 28 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) · 𝐵 ) ≤ 𝐴 ) |