This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A poset element less than or equal to an atom equals either zero or the atom. ( atss analog.) (Contributed by NM, 17-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leatom.b | |- B = ( Base ` K ) |
|
| leatom.l | |- .<_ = ( le ` K ) |
||
| leatom.z | |- .0. = ( 0. ` K ) |
||
| leatom.a | |- A = ( Atoms ` K ) |
||
| Assertion | leatb | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X = P \/ X = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leatom.b | |- B = ( Base ` K ) |
|
| 2 | leatom.l | |- .<_ = ( le ` K ) |
|
| 3 | leatom.z | |- .0. = ( 0. ` K ) |
|
| 4 | leatom.a | |- A = ( Atoms ` K ) |
|
| 5 | 1 2 3 | op0le | |- ( ( K e. OP /\ X e. B ) -> .0. .<_ X ) |
| 6 | 5 | 3adant3 | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> .0. .<_ X ) |
| 7 | 6 | biantrurd | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( .0. .<_ X /\ X .<_ P ) ) ) |
| 8 | opposet | |- ( K e. OP -> K e. Poset ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> K e. Poset ) |
| 10 | 1 3 | op0cl | |- ( K e. OP -> .0. e. B ) |
| 11 | 1 4 | atbase | |- ( P e. A -> P e. B ) |
| 12 | id | |- ( X e. B -> X e. B ) |
|
| 13 | 10 11 12 | 3anim123i | |- ( ( K e. OP /\ P e. A /\ X e. B ) -> ( .0. e. B /\ P e. B /\ X e. B ) ) |
| 14 | 13 | 3com23 | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( .0. e. B /\ P e. B /\ X e. B ) ) |
| 15 | eqid | |- ( |
|
| 16 | 3 15 4 | atcvr0 | |- ( ( K e. OP /\ P e. A ) -> .0. ( |
| 17 | 16 | 3adant2 | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> .0. ( |
| 18 | 1 2 15 | cvrnbtwn4 | |- ( ( K e. Poset /\ ( .0. e. B /\ P e. B /\ X e. B ) /\ .0. ( |
| 19 | 9 14 17 18 | syl3anc | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( ( .0. .<_ X /\ X .<_ P ) <-> ( .0. = X \/ X = P ) ) ) |
| 20 | eqcom | |- ( .0. = X <-> X = .0. ) |
|
| 21 | 20 | orbi1i | |- ( ( .0. = X \/ X = P ) <-> ( X = .0. \/ X = P ) ) |
| 22 | 19 21 | bitrdi | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( ( .0. .<_ X /\ X .<_ P ) <-> ( X = .0. \/ X = P ) ) ) |
| 23 | 7 22 | bitrd | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X = .0. \/ X = P ) ) ) |
| 24 | orcom | |- ( ( X = .0. \/ X = P ) <-> ( X = P \/ X = .0. ) ) |
|
| 25 | 23 24 | bitrdi | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X = P \/ X = .0. ) ) ) |