This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lattice element smaller than an atom is either the atom or zero. (Contributed by NM, 25-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atss | |- ( ( A e. CH /\ B e. HAtoms ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elat2 | |- ( B e. HAtoms <-> ( B e. CH /\ ( B =/= 0H /\ A. x e. CH ( x C_ B -> ( x = B \/ x = 0H ) ) ) ) ) |
|
| 2 | sseq1 | |- ( x = A -> ( x C_ B <-> A C_ B ) ) |
|
| 3 | eqeq1 | |- ( x = A -> ( x = B <-> A = B ) ) |
|
| 4 | eqeq1 | |- ( x = A -> ( x = 0H <-> A = 0H ) ) |
|
| 5 | 3 4 | orbi12d | |- ( x = A -> ( ( x = B \/ x = 0H ) <-> ( A = B \/ A = 0H ) ) ) |
| 6 | 2 5 | imbi12d | |- ( x = A -> ( ( x C_ B -> ( x = B \/ x = 0H ) ) <-> ( A C_ B -> ( A = B \/ A = 0H ) ) ) ) |
| 7 | 6 | rspcv | |- ( A e. CH -> ( A. x e. CH ( x C_ B -> ( x = B \/ x = 0H ) ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) ) |
| 8 | 7 | adantld | |- ( A e. CH -> ( ( B =/= 0H /\ A. x e. CH ( x C_ B -> ( x = B \/ x = 0H ) ) ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) ) |
| 9 | 8 | adantld | |- ( A e. CH -> ( ( B e. CH /\ ( B =/= 0H /\ A. x e. CH ( x C_ B -> ( x = B \/ x = 0H ) ) ) ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) ) |
| 10 | 9 | imp | |- ( ( A e. CH /\ ( B e. CH /\ ( B =/= 0H /\ A. x e. CH ( x C_ B -> ( x = B \/ x = 0H ) ) ) ) ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) |
| 11 | 1 10 | sylan2b | |- ( ( A e. CH /\ B e. HAtoms ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) |