This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A poset element less than or equal to an atom equals either zero or the atom. ( atss analog.) (Contributed by NM, 17-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leatom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| leatom.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| leatom.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| leatom.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | leatb | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑃 ↔ ( 𝑋 = 𝑃 ∨ 𝑋 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leatom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | leatom.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | leatom.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | leatom.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | 1 2 3 | op0le | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 0 ≤ 𝑋 ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 0 ≤ 𝑋 ) |
| 7 | 6 | biantrurd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑃 ↔ ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃 ) ) ) |
| 8 | opposet | ⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
| 10 | 1 3 | op0cl | ⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
| 11 | 1 4 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 12 | id | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) | |
| 13 | 10 11 12 | 3anim123i | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 14 | 13 | 3com23 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 15 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
| 16 | 3 15 4 | atcvr0 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) |
| 18 | 1 2 15 | cvrnbtwn4 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) → ( ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃 ) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃 ) ) ) |
| 19 | 9 14 17 18 | syl3anc | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃 ) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃 ) ) ) |
| 20 | eqcom | ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
| 21 | 20 | orbi1i | ⊢ ( ( 0 = 𝑋 ∨ 𝑋 = 𝑃 ) ↔ ( 𝑋 = 0 ∨ 𝑋 = 𝑃 ) ) |
| 22 | 19 21 | bitrdi | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃 ) ↔ ( 𝑋 = 0 ∨ 𝑋 = 𝑃 ) ) ) |
| 23 | 7 22 | bitrd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑃 ↔ ( 𝑋 = 0 ∨ 𝑋 = 𝑃 ) ) ) |
| 24 | orcom | ⊢ ( ( 𝑋 = 0 ∨ 𝑋 = 𝑃 ) ↔ ( 𝑋 = 𝑃 ∨ 𝑋 = 0 ) ) | |
| 25 | 23 24 | bitrdi | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑃 ↔ ( 𝑋 = 𝑃 ∨ 𝑋 = 0 ) ) ) |