This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opposet | |- ( K e. OP -> K e. Poset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 2 | eqid | |- ( lub ` K ) = ( lub ` K ) |
|
| 3 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
| 4 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 5 | eqid | |- ( oc ` K ) = ( oc ` K ) |
|
| 6 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 7 | eqid | |- ( meet ` K ) = ( meet ` K ) |
|
| 8 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 9 | eqid | |- ( 1. ` K ) = ( 1. ` K ) |
|
| 10 | 1 2 3 4 5 6 7 8 9 | isopos | |- ( K e. OP <-> ( ( K e. Poset /\ ( Base ` K ) e. dom ( lub ` K ) /\ ( Base ` K ) e. dom ( glb ` K ) ) /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( ( ( oc ` K ) ` x ) e. ( Base ` K ) /\ ( ( oc ` K ) ` ( ( oc ` K ) ` x ) ) = x /\ ( x ( le ` K ) y -> ( ( oc ` K ) ` y ) ( le ` K ) ( ( oc ` K ) ` x ) ) ) /\ ( x ( join ` K ) ( ( oc ` K ) ` x ) ) = ( 1. ` K ) /\ ( x ( meet ` K ) ( ( oc ` K ) ` x ) ) = ( 0. ` K ) ) ) ) |
| 11 | simpl1 | |- ( ( ( K e. Poset /\ ( Base ` K ) e. dom ( lub ` K ) /\ ( Base ` K ) e. dom ( glb ` K ) ) /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( ( ( oc ` K ) ` x ) e. ( Base ` K ) /\ ( ( oc ` K ) ` ( ( oc ` K ) ` x ) ) = x /\ ( x ( le ` K ) y -> ( ( oc ` K ) ` y ) ( le ` K ) ( ( oc ` K ) ` x ) ) ) /\ ( x ( join ` K ) ( ( oc ` K ) ` x ) ) = ( 1. ` K ) /\ ( x ( meet ` K ) ( ( oc ` K ) ` x ) ) = ( 0. ` K ) ) ) -> K e. Poset ) |
|
| 12 | 10 11 | sylbi | |- ( K e. OP -> K e. Poset ) |