This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthoposet zero is less than or equal to any element. ( ch0le analog.) (Contributed by NM, 12-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | op0le.b | |- B = ( Base ` K ) |
|
| op0le.l | |- .<_ = ( le ` K ) |
||
| op0le.z | |- .0. = ( 0. ` K ) |
||
| Assertion | op0le | |- ( ( K e. OP /\ X e. B ) -> .0. .<_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0le.b | |- B = ( Base ` K ) |
|
| 2 | op0le.l | |- .<_ = ( le ` K ) |
|
| 3 | op0le.z | |- .0. = ( 0. ` K ) |
|
| 4 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
| 5 | simpl | |- ( ( K e. OP /\ X e. B ) -> K e. OP ) |
|
| 6 | simpr | |- ( ( K e. OP /\ X e. B ) -> X e. B ) |
|
| 7 | eqid | |- ( lub ` K ) = ( lub ` K ) |
|
| 8 | 1 7 4 | op01dm | |- ( K e. OP -> ( B e. dom ( lub ` K ) /\ B e. dom ( glb ` K ) ) ) |
| 9 | 8 | simprd | |- ( K e. OP -> B e. dom ( glb ` K ) ) |
| 10 | 9 | adantr | |- ( ( K e. OP /\ X e. B ) -> B e. dom ( glb ` K ) ) |
| 11 | 1 4 2 3 5 6 10 | p0le | |- ( ( K e. OP /\ X e. B ) -> .0. .<_ X ) |