This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional form of lcmfdvds . (Contributed by AV, 26-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfdvdsb | |- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( A. m e. Z m || K <-> ( _lcm ` Z ) || K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfdvds | |- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( A. m e. Z m || K -> ( _lcm ` Z ) || K ) ) |
|
| 2 | dvdslcmf | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> A. x e. Z x || ( _lcm ` Z ) ) |
|
| 3 | breq1 | |- ( x = m -> ( x || ( _lcm ` Z ) <-> m || ( _lcm ` Z ) ) ) |
|
| 4 | 3 | rspcv | |- ( m e. Z -> ( A. x e. Z x || ( _lcm ` Z ) -> m || ( _lcm ` Z ) ) ) |
| 5 | ssel | |- ( Z C_ ZZ -> ( m e. Z -> m e. ZZ ) ) |
|
| 6 | 5 | adantr | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( m e. Z -> m e. ZZ ) ) |
| 7 | 6 | com12 | |- ( m e. Z -> ( ( Z C_ ZZ /\ Z e. Fin ) -> m e. ZZ ) ) |
| 8 | 7 | adantr | |- ( ( m e. Z /\ K e. ZZ ) -> ( ( Z C_ ZZ /\ Z e. Fin ) -> m e. ZZ ) ) |
| 9 | 8 | imp | |- ( ( ( m e. Z /\ K e. ZZ ) /\ ( Z C_ ZZ /\ Z e. Fin ) ) -> m e. ZZ ) |
| 10 | lcmfcl | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( _lcm ` Z ) e. NN0 ) |
|
| 11 | 10 | nn0zd | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( _lcm ` Z ) e. ZZ ) |
| 12 | 11 | adantl | |- ( ( ( m e. Z /\ K e. ZZ ) /\ ( Z C_ ZZ /\ Z e. Fin ) ) -> ( _lcm ` Z ) e. ZZ ) |
| 13 | simplr | |- ( ( ( m e. Z /\ K e. ZZ ) /\ ( Z C_ ZZ /\ Z e. Fin ) ) -> K e. ZZ ) |
|
| 14 | dvdstr | |- ( ( m e. ZZ /\ ( _lcm ` Z ) e. ZZ /\ K e. ZZ ) -> ( ( m || ( _lcm ` Z ) /\ ( _lcm ` Z ) || K ) -> m || K ) ) |
|
| 15 | 9 12 13 14 | syl3anc | |- ( ( ( m e. Z /\ K e. ZZ ) /\ ( Z C_ ZZ /\ Z e. Fin ) ) -> ( ( m || ( _lcm ` Z ) /\ ( _lcm ` Z ) || K ) -> m || K ) ) |
| 16 | 15 | expd | |- ( ( ( m e. Z /\ K e. ZZ ) /\ ( Z C_ ZZ /\ Z e. Fin ) ) -> ( m || ( _lcm ` Z ) -> ( ( _lcm ` Z ) || K -> m || K ) ) ) |
| 17 | 16 | exp31 | |- ( m e. Z -> ( K e. ZZ -> ( ( Z C_ ZZ /\ Z e. Fin ) -> ( m || ( _lcm ` Z ) -> ( ( _lcm ` Z ) || K -> m || K ) ) ) ) ) |
| 18 | 17 | com23 | |- ( m e. Z -> ( ( Z C_ ZZ /\ Z e. Fin ) -> ( K e. ZZ -> ( m || ( _lcm ` Z ) -> ( ( _lcm ` Z ) || K -> m || K ) ) ) ) ) |
| 19 | 18 | com24 | |- ( m e. Z -> ( m || ( _lcm ` Z ) -> ( K e. ZZ -> ( ( Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) || K -> m || K ) ) ) ) ) |
| 20 | 19 | com45 | |- ( m e. Z -> ( m || ( _lcm ` Z ) -> ( K e. ZZ -> ( ( _lcm ` Z ) || K -> ( ( Z C_ ZZ /\ Z e. Fin ) -> m || K ) ) ) ) ) |
| 21 | 4 20 | syld | |- ( m e. Z -> ( A. x e. Z x || ( _lcm ` Z ) -> ( K e. ZZ -> ( ( _lcm ` Z ) || K -> ( ( Z C_ ZZ /\ Z e. Fin ) -> m || K ) ) ) ) ) |
| 22 | 21 | com15 | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( A. x e. Z x || ( _lcm ` Z ) -> ( K e. ZZ -> ( ( _lcm ` Z ) || K -> ( m e. Z -> m || K ) ) ) ) ) |
| 23 | 2 22 | mpd | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( K e. ZZ -> ( ( _lcm ` Z ) || K -> ( m e. Z -> m || K ) ) ) ) |
| 24 | 23 | com12 | |- ( K e. ZZ -> ( ( Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) || K -> ( m e. Z -> m || K ) ) ) ) |
| 25 | 24 | 3impib | |- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) || K -> ( m e. Z -> m || K ) ) ) |
| 26 | 25 | ralrimdv | |- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) || K -> A. m e. Z m || K ) ) |
| 27 | 1 26 | impbid | |- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( A. m e. Z m || K <-> ( _lcm ` Z ) || K ) ) |