This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional form of lcmfdvds . (Contributed by AV, 26-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfdvdsb | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfdvds | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) | |
| 2 | dvdslcmf | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) ) | |
| 3 | breq1 | ⊢ ( 𝑥 = 𝑚 → ( 𝑥 ∥ ( lcm ‘ 𝑍 ) ↔ 𝑚 ∥ ( lcm ‘ 𝑍 ) ) ) | |
| 4 | 3 | rspcv | ⊢ ( 𝑚 ∈ 𝑍 → ( ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) → 𝑚 ∥ ( lcm ‘ 𝑍 ) ) ) |
| 5 | ssel | ⊢ ( 𝑍 ⊆ ℤ → ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ ) ) |
| 7 | 6 | com12 | ⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → 𝑚 ∈ ℤ ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ ) → ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → 𝑚 ∈ ℤ ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → 𝑚 ∈ ℤ ) |
| 10 | lcmfcl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) | |
| 11 | 10 | nn0zd | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) ∈ ℤ ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( lcm ‘ 𝑍 ) ∈ ℤ ) |
| 13 | simplr | ⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → 𝐾 ∈ ℤ ) | |
| 14 | dvdstr | ⊢ ( ( 𝑚 ∈ ℤ ∧ ( lcm ‘ 𝑍 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝑚 ∥ ( lcm ‘ 𝑍 ) ∧ ( lcm ‘ 𝑍 ) ∥ 𝐾 ) → 𝑚 ∥ 𝐾 ) ) | |
| 15 | 9 12 13 14 | syl3anc | ⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( ( 𝑚 ∥ ( lcm ‘ 𝑍 ) ∧ ( lcm ‘ 𝑍 ) ∥ 𝐾 ) → 𝑚 ∥ 𝐾 ) ) |
| 16 | 15 | expd | ⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( 𝑚 ∥ ( lcm ‘ 𝑍 ) → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → 𝑚 ∥ 𝐾 ) ) ) |
| 17 | 16 | exp31 | ⊢ ( 𝑚 ∈ 𝑍 → ( 𝐾 ∈ ℤ → ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( 𝑚 ∥ ( lcm ‘ 𝑍 ) → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → 𝑚 ∥ 𝐾 ) ) ) ) ) |
| 18 | 17 | com23 | ⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( 𝐾 ∈ ℤ → ( 𝑚 ∥ ( lcm ‘ 𝑍 ) → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → 𝑚 ∥ 𝐾 ) ) ) ) ) |
| 19 | 18 | com24 | ⊢ ( 𝑚 ∈ 𝑍 → ( 𝑚 ∥ ( lcm ‘ 𝑍 ) → ( 𝐾 ∈ ℤ → ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → 𝑚 ∥ 𝐾 ) ) ) ) ) |
| 20 | 19 | com45 | ⊢ ( 𝑚 ∈ 𝑍 → ( 𝑚 ∥ ( lcm ‘ 𝑍 ) → ( 𝐾 ∈ ℤ → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → 𝑚 ∥ 𝐾 ) ) ) ) ) |
| 21 | 4 20 | syld | ⊢ ( 𝑚 ∈ 𝑍 → ( ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) → ( 𝐾 ∈ ℤ → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → 𝑚 ∥ 𝐾 ) ) ) ) ) |
| 22 | 21 | com15 | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) → ( 𝐾 ∈ ℤ → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → ( 𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾 ) ) ) ) ) |
| 23 | 2 22 | mpd | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( 𝐾 ∈ ℤ → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → ( 𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾 ) ) ) ) |
| 24 | 23 | com12 | ⊢ ( 𝐾 ∈ ℤ → ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → ( 𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾 ) ) ) ) |
| 25 | 24 | 3impib | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → ( 𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾 ) ) ) |
| 26 | 25 | ralrimdv | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( lcm ‘ 𝑍 ) ∥ 𝐾 → ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) |
| 27 | 1 26 | impbid | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) |