This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdslcmf | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> A. x e. Z x || ( _lcm ` Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( Z C_ ZZ -> ( x e. Z -> x e. ZZ ) ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e. Z ) -> ( x e. Z -> x e. ZZ ) ) |
| 3 | 2 | imp | |- ( ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e. Z ) /\ x e. Z ) -> x e. ZZ ) |
| 4 | dvds0 | |- ( x e. ZZ -> x || 0 ) |
|
| 5 | 3 4 | syl | |- ( ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e. Z ) /\ x e. Z ) -> x || 0 ) |
| 6 | lcmf0val | |- ( ( Z C_ ZZ /\ 0 e. Z ) -> ( _lcm ` Z ) = 0 ) |
|
| 7 | 6 | ad4ant13 | |- ( ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e. Z ) /\ x e. Z ) -> ( _lcm ` Z ) = 0 ) |
| 8 | 5 7 | breqtrrd | |- ( ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e. Z ) /\ x e. Z ) -> x || ( _lcm ` Z ) ) |
| 9 | 8 | ralrimiva | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e. Z ) -> A. x e. Z x || ( _lcm ` Z ) ) |
| 10 | df-nel | |- ( 0 e/ Z <-> -. 0 e. Z ) |
|
| 11 | lcmfcllem | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) e. { n e. NN | A. x e. Z x || n } ) |
|
| 12 | 11 | 3expa | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e/ Z ) -> ( _lcm ` Z ) e. { n e. NN | A. x e. Z x || n } ) |
| 13 | 10 12 | sylan2br | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ -. 0 e. Z ) -> ( _lcm ` Z ) e. { n e. NN | A. x e. Z x || n } ) |
| 14 | lcmfn0cl | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) e. NN ) |
|
| 15 | 14 | 3expa | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e/ Z ) -> ( _lcm ` Z ) e. NN ) |
| 16 | 10 15 | sylan2br | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ -. 0 e. Z ) -> ( _lcm ` Z ) e. NN ) |
| 17 | breq2 | |- ( n = ( _lcm ` Z ) -> ( x || n <-> x || ( _lcm ` Z ) ) ) |
|
| 18 | 17 | ralbidv | |- ( n = ( _lcm ` Z ) -> ( A. x e. Z x || n <-> A. x e. Z x || ( _lcm ` Z ) ) ) |
| 19 | 18 | elrab3 | |- ( ( _lcm ` Z ) e. NN -> ( ( _lcm ` Z ) e. { n e. NN | A. x e. Z x || n } <-> A. x e. Z x || ( _lcm ` Z ) ) ) |
| 20 | 16 19 | syl | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ -. 0 e. Z ) -> ( ( _lcm ` Z ) e. { n e. NN | A. x e. Z x || n } <-> A. x e. Z x || ( _lcm ` Z ) ) ) |
| 21 | 13 20 | mpbid | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ -. 0 e. Z ) -> A. x e. Z x || ( _lcm ` Z ) ) |
| 22 | 9 21 | pm2.61dan | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> A. x e. Z x || ( _lcm ` Z ) ) |