This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of a set of integers divides any integer which is divisible by all elements of the set. (Contributed by AV, 26-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfdvds | |- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( A. m e. Z m || K -> ( _lcm ` Z ) || K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( k = K -> ( m || k <-> m || K ) ) |
|
| 2 | 1 | ralbidv | |- ( k = K -> ( A. m e. Z m || k <-> A. m e. Z m || K ) ) |
| 3 | breq2 | |- ( k = K -> ( ( _lcm ` Z ) || k <-> ( _lcm ` Z ) || K ) ) |
|
| 4 | 2 3 | imbi12d | |- ( k = K -> ( ( A. m e. Z m || k -> ( _lcm ` Z ) || k ) <-> ( A. m e. Z m || K -> ( _lcm ` Z ) || K ) ) ) |
| 5 | 4 | rspccv | |- ( A. k e. ZZ ( A. m e. Z m || k -> ( _lcm ` Z ) || k ) -> ( K e. ZZ -> ( A. m e. Z m || K -> ( _lcm ` Z ) || K ) ) ) |
| 6 | 5 | adantr | |- ( ( A. k e. ZZ ( A. m e. Z m || k -> ( _lcm ` Z ) || k ) /\ A. n e. ZZ ( _lcm ` ( Z u. { n } ) ) = ( ( _lcm ` Z ) lcm n ) ) -> ( K e. ZZ -> ( A. m e. Z m || K -> ( _lcm ` Z ) || K ) ) ) |
| 7 | lcmfunsnlem | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( A. k e. ZZ ( A. m e. Z m || k -> ( _lcm ` Z ) || k ) /\ A. n e. ZZ ( _lcm ` ( Z u. { n } ) ) = ( ( _lcm ` Z ) lcm n ) ) ) |
|
| 8 | 6 7 | syl11 | |- ( K e. ZZ -> ( ( Z C_ ZZ /\ Z e. Fin ) -> ( A. m e. Z m || K -> ( _lcm ` Z ) || K ) ) ) |
| 9 | 8 | 3impib | |- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( A. m e. Z m || K -> ( _lcm ` Z ) || K ) ) |