This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Moore closure generalizes module span. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrclsp.u | |- U = ( LSubSp ` W ) |
|
| mrclsp.k | |- K = ( LSpan ` W ) |
||
| mrclsp.f | |- F = ( mrCls ` U ) |
||
| Assertion | mrclsp | |- ( W e. LMod -> K = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrclsp.u | |- U = ( LSubSp ` W ) |
|
| 2 | mrclsp.k | |- K = ( LSpan ` W ) |
|
| 3 | mrclsp.f | |- F = ( mrCls ` U ) |
|
| 4 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 5 | 4 1 2 | lspfval | |- ( W e. LMod -> K = ( a e. ~P ( Base ` W ) |-> |^| { b e. U | a C_ b } ) ) |
| 6 | 4 1 | lssmre | |- ( W e. LMod -> U e. ( Moore ` ( Base ` W ) ) ) |
| 7 | 3 | mrcfval | |- ( U e. ( Moore ` ( Base ` W ) ) -> F = ( a e. ~P ( Base ` W ) |-> |^| { b e. U | a C_ b } ) ) |
| 8 | 6 7 | syl | |- ( W e. LMod -> F = ( a e. ~P ( Base ` W ) |-> |^| { b e. U | a C_ b } ) ) |
| 9 | 5 8 | eqtr4d | |- ( W e. LMod -> K = F ) |