This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismri.1 | |- N = ( mrCls ` A ) |
|
| ismri.2 | |- I = ( mrInd ` A ) |
||
| Assertion | ismri | |- ( A e. ( Moore ` X ) -> ( S e. I <-> ( S C_ X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismri.1 | |- N = ( mrCls ` A ) |
|
| 2 | ismri.2 | |- I = ( mrInd ` A ) |
|
| 3 | 1 2 | mrisval | |- ( A e. ( Moore ` X ) -> I = { s e. ~P X | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } ) |
| 4 | 3 | eleq2d | |- ( A e. ( Moore ` X ) -> ( S e. I <-> S e. { s e. ~P X | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } ) ) |
| 5 | difeq1 | |- ( s = S -> ( s \ { x } ) = ( S \ { x } ) ) |
|
| 6 | 5 | fveq2d | |- ( s = S -> ( N ` ( s \ { x } ) ) = ( N ` ( S \ { x } ) ) ) |
| 7 | 6 | eleq2d | |- ( s = S -> ( x e. ( N ` ( s \ { x } ) ) <-> x e. ( N ` ( S \ { x } ) ) ) ) |
| 8 | 7 | notbid | |- ( s = S -> ( -. x e. ( N ` ( s \ { x } ) ) <-> -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 9 | 8 | raleqbi1dv | |- ( s = S -> ( A. x e. s -. x e. ( N ` ( s \ { x } ) ) <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 10 | 9 | elrab | |- ( S e. { s e. ~P X | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } <-> ( S e. ~P X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 11 | 4 10 | bitrdi | |- ( A e. ( Moore ` X ) -> ( S e. I <-> ( S e. ~P X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) ) |
| 12 | elfvex | |- ( A e. ( Moore ` X ) -> X e. _V ) |
|
| 13 | elpw2g | |- ( X e. _V -> ( S e. ~P X <-> S C_ X ) ) |
|
| 14 | 12 13 | syl | |- ( A e. ( Moore ` X ) -> ( S e. ~P X <-> S C_ X ) ) |
| 15 | 14 | anbi1d | |- ( A e. ( Moore ` X ) -> ( ( S e. ~P X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) <-> ( S C_ X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) ) |
| 16 | 11 15 | bitrd | |- ( A e. ( Moore ` X ) -> ( S e. I <-> ( S C_ X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) ) |