This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex and lbsacsbs to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lvecdim.1 | |- J = ( LBasis ` W ) |
|
| Assertion | lvecdim | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> S ~~ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecdim.1 | |- J = ( LBasis ` W ) |
|
| 2 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 3 | eqid | |- ( mrCls ` ( LSubSp ` W ) ) = ( mrCls ` ( LSubSp ` W ) ) |
|
| 4 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 5 | 2 3 4 | lssacsex | |- ( W e. LVec -> ( ( LSubSp ` W ) e. ( ACS ` ( Base ` W ) ) /\ A. x e. ~P ( Base ` W ) A. y e. ( Base ` W ) A. z e. ( ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { y } ) ) \ ( ( mrCls ` ( LSubSp ` W ) ) ` x ) ) y e. ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { z } ) ) ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( ( LSubSp ` W ) e. ( ACS ` ( Base ` W ) ) /\ A. x e. ~P ( Base ` W ) A. y e. ( Base ` W ) A. z e. ( ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { y } ) ) \ ( ( mrCls ` ( LSubSp ` W ) ) ` x ) ) y e. ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { z } ) ) ) ) |
| 7 | 6 | simpld | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( LSubSp ` W ) e. ( ACS ` ( Base ` W ) ) ) |
| 8 | eqid | |- ( mrInd ` ( LSubSp ` W ) ) = ( mrInd ` ( LSubSp ` W ) ) |
|
| 9 | 6 | simprd | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> A. x e. ~P ( Base ` W ) A. y e. ( Base ` W ) A. z e. ( ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { y } ) ) \ ( ( mrCls ` ( LSubSp ` W ) ) ` x ) ) y e. ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { z } ) ) ) |
| 10 | simp2 | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> S e. J ) |
|
| 11 | 2 3 4 8 1 | lbsacsbs | |- ( W e. LVec -> ( S e. J <-> ( S e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) ) ) |
| 12 | 11 | 3ad2ant1 | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( S e. J <-> ( S e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) ) ) |
| 13 | 10 12 | mpbid | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( S e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) ) |
| 14 | 13 | simpld | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> S e. ( mrInd ` ( LSubSp ` W ) ) ) |
| 15 | simp3 | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> T e. J ) |
|
| 16 | 2 3 4 8 1 | lbsacsbs | |- ( W e. LVec -> ( T e. J <-> ( T e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) ) ) |
| 17 | 16 | 3ad2ant1 | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( T e. J <-> ( T e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) ) ) |
| 18 | 15 17 | mpbid | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( T e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) ) |
| 19 | 18 | simpld | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> T e. ( mrInd ` ( LSubSp ` W ) ) ) |
| 20 | 13 | simprd | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) |
| 21 | 18 | simprd | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) |
| 22 | 20 21 | eqtr4d | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( ( mrCls ` ( LSubSp ` W ) ) ` T ) ) |
| 23 | 7 3 8 9 14 19 22 | acsexdimd | |- ( ( W e. LVec /\ S e. J /\ T e. J ) -> S ~~ T ) |