This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lattice meet is idempotent. Analogue of inidm . (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmidm.b | |- B = ( Base ` K ) |
|
| latmidm.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latmidm | |- ( ( K e. Lat /\ X e. B ) -> ( X ./\ X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmidm.b | |- B = ( Base ` K ) |
|
| 2 | latmidm.m | |- ./\ = ( meet ` K ) |
|
| 3 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 4 | simpl | |- ( ( K e. Lat /\ X e. B ) -> K e. Lat ) |
|
| 5 | 1 2 | latmcl | |- ( ( K e. Lat /\ X e. B /\ X e. B ) -> ( X ./\ X ) e. B ) |
| 6 | 5 | 3anidm23 | |- ( ( K e. Lat /\ X e. B ) -> ( X ./\ X ) e. B ) |
| 7 | simpr | |- ( ( K e. Lat /\ X e. B ) -> X e. B ) |
|
| 8 | 1 3 2 | latmle1 | |- ( ( K e. Lat /\ X e. B /\ X e. B ) -> ( X ./\ X ) ( le ` K ) X ) |
| 9 | 8 | 3anidm23 | |- ( ( K e. Lat /\ X e. B ) -> ( X ./\ X ) ( le ` K ) X ) |
| 10 | 1 3 | latref | |- ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) X ) |
| 11 | 1 3 2 | latlem12 | |- ( ( K e. Lat /\ ( X e. B /\ X e. B /\ X e. B ) ) -> ( ( X ( le ` K ) X /\ X ( le ` K ) X ) <-> X ( le ` K ) ( X ./\ X ) ) ) |
| 12 | 4 7 7 7 11 | syl13anc | |- ( ( K e. Lat /\ X e. B ) -> ( ( X ( le ` K ) X /\ X ( le ` K ) X ) <-> X ( le ` K ) ( X ./\ X ) ) ) |
| 13 | 10 10 12 | mpbi2and | |- ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) ( X ./\ X ) ) |
| 14 | 1 3 4 6 7 9 13 | latasymd | |- ( ( K e. Lat /\ X e. B ) -> ( X ./\ X ) = X ) |