This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for "not less than" in the Hilbert lattice. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chnle | |- ( ( A e. CH /\ B e. CH ) -> ( -. B C_ A <-> A C. ( A vH B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 | |- ( A = if ( A e. CH , A , 0H ) -> ( B C_ A <-> B C_ if ( A e. CH , A , 0H ) ) ) |
|
| 2 | 1 | notbid | |- ( A = if ( A e. CH , A , 0H ) -> ( -. B C_ A <-> -. B C_ if ( A e. CH , A , 0H ) ) ) |
| 3 | id | |- ( A = if ( A e. CH , A , 0H ) -> A = if ( A e. CH , A , 0H ) ) |
|
| 4 | oveq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A vH B ) = ( if ( A e. CH , A , 0H ) vH B ) ) |
|
| 5 | 3 4 | psseq12d | |- ( A = if ( A e. CH , A , 0H ) -> ( A C. ( A vH B ) <-> if ( A e. CH , A , 0H ) C. ( if ( A e. CH , A , 0H ) vH B ) ) ) |
| 6 | 2 5 | bibi12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( -. B C_ A <-> A C. ( A vH B ) ) <-> ( -. B C_ if ( A e. CH , A , 0H ) <-> if ( A e. CH , A , 0H ) C. ( if ( A e. CH , A , 0H ) vH B ) ) ) ) |
| 7 | sseq1 | |- ( B = if ( B e. CH , B , 0H ) -> ( B C_ if ( A e. CH , A , 0H ) <-> if ( B e. CH , B , 0H ) C_ if ( A e. CH , A , 0H ) ) ) |
|
| 8 | 7 | notbid | |- ( B = if ( B e. CH , B , 0H ) -> ( -. B C_ if ( A e. CH , A , 0H ) <-> -. if ( B e. CH , B , 0H ) C_ if ( A e. CH , A , 0H ) ) ) |
| 9 | oveq2 | |- ( B = if ( B e. CH , B , 0H ) -> ( if ( A e. CH , A , 0H ) vH B ) = ( if ( A e. CH , A , 0H ) vH if ( B e. CH , B , 0H ) ) ) |
|
| 10 | 9 | psseq2d | |- ( B = if ( B e. CH , B , 0H ) -> ( if ( A e. CH , A , 0H ) C. ( if ( A e. CH , A , 0H ) vH B ) <-> if ( A e. CH , A , 0H ) C. ( if ( A e. CH , A , 0H ) vH if ( B e. CH , B , 0H ) ) ) ) |
| 11 | 8 10 | bibi12d | |- ( B = if ( B e. CH , B , 0H ) -> ( ( -. B C_ if ( A e. CH , A , 0H ) <-> if ( A e. CH , A , 0H ) C. ( if ( A e. CH , A , 0H ) vH B ) ) <-> ( -. if ( B e. CH , B , 0H ) C_ if ( A e. CH , A , 0H ) <-> if ( A e. CH , A , 0H ) C. ( if ( A e. CH , A , 0H ) vH if ( B e. CH , B , 0H ) ) ) ) ) |
| 12 | h0elch | |- 0H e. CH |
|
| 13 | 12 | elimel | |- if ( A e. CH , A , 0H ) e. CH |
| 14 | 12 | elimel | |- if ( B e. CH , B , 0H ) e. CH |
| 15 | 13 14 | chnlei | |- ( -. if ( B e. CH , B , 0H ) C_ if ( A e. CH , A , 0H ) <-> if ( A e. CH , A , 0H ) C. ( if ( A e. CH , A , 0H ) vH if ( B e. CH , B , 0H ) ) ) |
| 16 | 6 11 15 | dedth2h | |- ( ( A e. CH /\ B e. CH ) -> ( -. B C_ A <-> A C. ( A vH B ) ) ) |