This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than or equal to" in terms of join. ( chlejb1 analog.) (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | |- B = ( Base ` K ) |
|
| latlej.l | |- .<_ = ( le ` K ) |
||
| latlej.j | |- .\/ = ( join ` K ) |
||
| Assertion | latleeqj1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .\/ Y ) = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | |- B = ( Base ` K ) |
|
| 2 | latlej.l | |- .<_ = ( le ` K ) |
|
| 3 | latlej.j | |- .\/ = ( join ` K ) |
|
| 4 | 1 2 | latref | |- ( ( K e. Lat /\ Y e. B ) -> Y .<_ Y ) |
| 5 | 4 | 3adant2 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> Y .<_ Y ) |
| 6 | 5 | biantrud | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .<_ Y /\ Y .<_ Y ) ) ) |
| 7 | simp1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> K e. Lat ) |
|
| 8 | simp2 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 9 | simp3 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 10 | 1 2 3 | latjle12 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Y e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Y ) <-> ( X .\/ Y ) .<_ Y ) ) |
| 11 | 7 8 9 9 10 | syl13anc | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ Y ) <-> ( X .\/ Y ) .<_ Y ) ) |
| 12 | 6 11 | bitrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .\/ Y ) .<_ Y ) ) |
| 13 | 1 2 3 | latlej2 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> Y .<_ ( X .\/ Y ) ) |
| 14 | 13 | biantrud | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .\/ Y ) .<_ Y <-> ( ( X .\/ Y ) .<_ Y /\ Y .<_ ( X .\/ Y ) ) ) ) |
| 15 | 12 14 | bitrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( ( X .\/ Y ) .<_ Y /\ Y .<_ ( X .\/ Y ) ) ) ) |
| 16 | latpos | |- ( K e. Lat -> K e. Poset ) |
|
| 17 | 16 | 3ad2ant1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> K e. Poset ) |
| 18 | 1 3 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
| 19 | 1 2 | posasymb | |- ( ( K e. Poset /\ ( X .\/ Y ) e. B /\ Y e. B ) -> ( ( ( X .\/ Y ) .<_ Y /\ Y .<_ ( X .\/ Y ) ) <-> ( X .\/ Y ) = Y ) ) |
| 20 | 17 18 9 19 | syl3anc | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( ( X .\/ Y ) .<_ Y /\ Y .<_ ( X .\/ Y ) ) <-> ( X .\/ Y ) = Y ) ) |
| 21 | 15 20 | bitrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .\/ Y ) = Y ) ) |