This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rearrangement of lattice meet. ( in12 analog.) (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olmass.b | |- B = ( Base ` K ) |
|
| olmass.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latm12 | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( Y ./\ Z ) ) = ( Y ./\ ( X ./\ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olmass.b | |- B = ( Base ` K ) |
|
| 2 | olmass.m | |- ./\ = ( meet ` K ) |
|
| 3 | ollat | |- ( K e. OL -> K e. Lat ) |
|
| 4 | 3 | adantr | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
| 5 | simpr1 | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 6 | simpr2 | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 7 | 1 2 | latmcom | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| 8 | 4 5 6 7 | syl3anc | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| 9 | 8 | oveq1d | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) ./\ Z ) = ( ( Y ./\ X ) ./\ Z ) ) |
| 10 | 1 2 | latmassOLD | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) ./\ Z ) = ( X ./\ ( Y ./\ Z ) ) ) |
| 11 | simpr3 | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 12 | 6 5 11 | 3jca | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y e. B /\ X e. B /\ Z e. B ) ) |
| 13 | 1 2 | latmassOLD | |- ( ( K e. OL /\ ( Y e. B /\ X e. B /\ Z e. B ) ) -> ( ( Y ./\ X ) ./\ Z ) = ( Y ./\ ( X ./\ Z ) ) ) |
| 14 | 12 13 | syldan | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( Y ./\ X ) ./\ Z ) = ( Y ./\ ( X ./\ Z ) ) ) |
| 15 | 9 10 14 | 3eqtr3d | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( Y ./\ Z ) ) = ( Y ./\ ( X ./\ Z ) ) ) |