This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a group homomorphism F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1ghm0to0.a | |- A = ( Base ` R ) |
|
| f1ghm0to0.b | |- B = ( Base ` S ) |
||
| f1ghm0to0.n | |- N = ( 0g ` R ) |
||
| f1ghm0to0.0 | |- .0. = ( 0g ` S ) |
||
| Assertion | f1ghm0to0 | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = .0. <-> X = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ghm0to0.a | |- A = ( Base ` R ) |
|
| 2 | f1ghm0to0.b | |- B = ( Base ` S ) |
|
| 3 | f1ghm0to0.n | |- N = ( 0g ` R ) |
|
| 4 | f1ghm0to0.0 | |- .0. = ( 0g ` S ) |
|
| 5 | 3 4 | ghmid | |- ( F e. ( R GrpHom S ) -> ( F ` N ) = .0. ) |
| 6 | 5 | 3ad2ant1 | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( F ` N ) = .0. ) |
| 7 | 6 | eqeq2d | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = ( F ` N ) <-> ( F ` X ) = .0. ) ) |
| 8 | simp2 | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> F : A -1-1-> B ) |
|
| 9 | simp3 | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> X e. A ) |
|
| 10 | ghmgrp1 | |- ( F e. ( R GrpHom S ) -> R e. Grp ) |
|
| 11 | 1 3 | grpidcl | |- ( R e. Grp -> N e. A ) |
| 12 | 10 11 | syl | |- ( F e. ( R GrpHom S ) -> N e. A ) |
| 13 | 12 | 3ad2ant1 | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> N e. A ) |
| 14 | f1veqaeq | |- ( ( F : A -1-1-> B /\ ( X e. A /\ N e. A ) ) -> ( ( F ` X ) = ( F ` N ) -> X = N ) ) |
|
| 15 | 8 9 13 14 | syl12anc | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = ( F ` N ) -> X = N ) ) |
| 16 | 7 15 | sylbird | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = .0. -> X = N ) ) |
| 17 | fveq2 | |- ( X = N -> ( F ` X ) = ( F ` N ) ) |
|
| 18 | 17 6 | sylan9eqr | |- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) /\ X = N ) -> ( F ` X ) = .0. ) |
| 19 | 18 | ex | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( X = N -> ( F ` X ) = .0. ) ) |
| 20 | 16 19 | impbid | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = .0. <-> X = N ) ) |