This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vector A has norm 1, the outer product | A >. <. A | is the projector onto the subspace spanned by A . http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators . (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbpj | |- ( ( A e. ~H /\ ( normh ` A ) = 1 ) -> ( A ketbra A ) = ( projh ` ( span ` { A } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( ( normh ` A ) = 1 -> ( ( normh ` A ) ^ 2 ) = ( 1 ^ 2 ) ) |
|
| 2 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 3 | 1 2 | eqtrdi | |- ( ( normh ` A ) = 1 -> ( ( normh ` A ) ^ 2 ) = 1 ) |
| 4 | 3 | oveq2d | |- ( ( normh ` A ) = 1 -> ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) = ( ( x .ih A ) / 1 ) ) |
| 5 | hicl | |- ( ( x e. ~H /\ A e. ~H ) -> ( x .ih A ) e. CC ) |
|
| 6 | 5 | ancoms | |- ( ( A e. ~H /\ x e. ~H ) -> ( x .ih A ) e. CC ) |
| 7 | 6 | div1d | |- ( ( A e. ~H /\ x e. ~H ) -> ( ( x .ih A ) / 1 ) = ( x .ih A ) ) |
| 8 | 4 7 | sylan9eqr | |- ( ( ( A e. ~H /\ x e. ~H ) /\ ( normh ` A ) = 1 ) -> ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) = ( x .ih A ) ) |
| 9 | 8 | an32s | |- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) = ( x .ih A ) ) |
| 10 | 9 | oveq1d | |- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> ( ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) = ( ( x .ih A ) .h A ) ) |
| 11 | simpll | |- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> A e. ~H ) |
|
| 12 | simpr | |- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> x e. ~H ) |
|
| 13 | ax-1ne0 | |- 1 =/= 0 |
|
| 14 | neeq1 | |- ( ( normh ` A ) = 1 -> ( ( normh ` A ) =/= 0 <-> 1 =/= 0 ) ) |
|
| 15 | 13 14 | mpbiri | |- ( ( normh ` A ) = 1 -> ( normh ` A ) =/= 0 ) |
| 16 | normne0 | |- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
|
| 17 | 15 16 | imbitrid | |- ( A e. ~H -> ( ( normh ` A ) = 1 -> A =/= 0h ) ) |
| 18 | 17 | imp | |- ( ( A e. ~H /\ ( normh ` A ) = 1 ) -> A =/= 0h ) |
| 19 | 18 | adantr | |- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> A =/= 0h ) |
| 20 | pjspansn | |- ( ( A e. ~H /\ x e. ~H /\ A =/= 0h ) -> ( ( projh ` ( span ` { A } ) ) ` x ) = ( ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) ) |
|
| 21 | 11 12 19 20 | syl3anc | |- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> ( ( projh ` ( span ` { A } ) ) ` x ) = ( ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) ) |
| 22 | kbval | |- ( ( A e. ~H /\ A e. ~H /\ x e. ~H ) -> ( ( A ketbra A ) ` x ) = ( ( x .ih A ) .h A ) ) |
|
| 23 | 22 | 3anidm12 | |- ( ( A e. ~H /\ x e. ~H ) -> ( ( A ketbra A ) ` x ) = ( ( x .ih A ) .h A ) ) |
| 24 | 23 | adantlr | |- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> ( ( A ketbra A ) ` x ) = ( ( x .ih A ) .h A ) ) |
| 25 | 10 21 24 | 3eqtr4rd | |- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> ( ( A ketbra A ) ` x ) = ( ( projh ` ( span ` { A } ) ) ` x ) ) |
| 26 | 25 | ralrimiva | |- ( ( A e. ~H /\ ( normh ` A ) = 1 ) -> A. x e. ~H ( ( A ketbra A ) ` x ) = ( ( projh ` ( span ` { A } ) ) ` x ) ) |
| 27 | kbop | |- ( ( A e. ~H /\ A e. ~H ) -> ( A ketbra A ) : ~H --> ~H ) |
|
| 28 | 27 | anidms | |- ( A e. ~H -> ( A ketbra A ) : ~H --> ~H ) |
| 29 | 28 | ffnd | |- ( A e. ~H -> ( A ketbra A ) Fn ~H ) |
| 30 | spansnch | |- ( A e. ~H -> ( span ` { A } ) e. CH ) |
|
| 31 | pjfn | |- ( ( span ` { A } ) e. CH -> ( projh ` ( span ` { A } ) ) Fn ~H ) |
|
| 32 | 30 31 | syl | |- ( A e. ~H -> ( projh ` ( span ` { A } ) ) Fn ~H ) |
| 33 | eqfnfv | |- ( ( ( A ketbra A ) Fn ~H /\ ( projh ` ( span ` { A } ) ) Fn ~H ) -> ( ( A ketbra A ) = ( projh ` ( span ` { A } ) ) <-> A. x e. ~H ( ( A ketbra A ) ` x ) = ( ( projh ` ( span ` { A } ) ) ` x ) ) ) |
|
| 34 | 29 32 33 | syl2anc | |- ( A e. ~H -> ( ( A ketbra A ) = ( projh ` ( span ` { A } ) ) <-> A. x e. ~H ( ( A ketbra A ) ` x ) = ( ( projh ` ( span ` { A } ) ) ` x ) ) ) |
| 35 | 34 | adantr | |- ( ( A e. ~H /\ ( normh ` A ) = 1 ) -> ( ( A ketbra A ) = ( projh ` ( span ` { A } ) ) <-> A. x e. ~H ( ( A ketbra A ) ` x ) = ( ( projh ` ( span ` { A } ) ) ` x ) ) ) |
| 36 | 26 35 | mpbird | |- ( ( A e. ~H /\ ( normh ` A ) = 1 ) -> ( A ketbra A ) = ( projh ` ( span ` { A } ) ) ) |