This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the operator resulting from the outer product | A >. <. B | of two vectors. Equation 8.1 of Prugovecki p. 376. (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbval | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A ketbra B ) ` C ) = ( ( C .ih B ) .h A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kbfval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A ketbra B ) = ( x e. ~H |-> ( ( x .ih B ) .h A ) ) ) |
|
| 2 | 1 | fveq1d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A ketbra B ) ` C ) = ( ( x e. ~H |-> ( ( x .ih B ) .h A ) ) ` C ) ) |
| 3 | oveq1 | |- ( x = C -> ( x .ih B ) = ( C .ih B ) ) |
|
| 4 | 3 | oveq1d | |- ( x = C -> ( ( x .ih B ) .h A ) = ( ( C .ih B ) .h A ) ) |
| 5 | eqid | |- ( x e. ~H |-> ( ( x .ih B ) .h A ) ) = ( x e. ~H |-> ( ( x .ih B ) .h A ) ) |
|
| 6 | ovex | |- ( ( C .ih B ) .h A ) e. _V |
|
| 7 | 4 5 6 | fvmpt | |- ( C e. ~H -> ( ( x e. ~H |-> ( ( x .ih B ) .h A ) ) ` C ) = ( ( C .ih B ) .h A ) ) |
| 8 | 2 7 | sylan9eq | |- ( ( ( A e. ~H /\ B e. ~H ) /\ C e. ~H ) -> ( ( A ketbra B ) ` C ) = ( ( C .ih B ) .h A ) ) |
| 9 | 8 | 3impa | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A ketbra B ) ` C ) = ( ( C .ih B ) .h A ) ) |