This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vector A has norm 1, the outer product | A >. <. A | is the projector onto the subspace spanned by A . http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators . (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbpj | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) → ( 𝐴 ketbra 𝐴 ) = ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( ( normℎ ‘ 𝐴 ) = 1 → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 1 ↑ 2 ) ) | |
| 2 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 3 | 1 2 | eqtrdi | ⊢ ( ( normℎ ‘ 𝐴 ) = 1 → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = 1 ) |
| 4 | 3 | oveq2d | ⊢ ( ( normℎ ‘ 𝐴 ) = 1 → ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( ( 𝑥 ·ih 𝐴 ) / 1 ) ) |
| 5 | hicl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ ) |
| 7 | 6 | div1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐴 ) / 1 ) = ( 𝑥 ·ih 𝐴 ) ) |
| 8 | 4 7 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝐴 ) = 1 ) → ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( 𝑥 ·ih 𝐴 ) ) |
| 9 | 8 | an32s | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( 𝑥 ·ih 𝐴 ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) = ( ( 𝑥 ·ih 𝐴 ) ·ℎ 𝐴 ) ) |
| 11 | simpll | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℋ ) | |
| 12 | simpr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) | |
| 13 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 14 | neeq1 | ⊢ ( ( normℎ ‘ 𝐴 ) = 1 → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 1 ≠ 0 ) ) | |
| 15 | 13 14 | mpbiri | ⊢ ( ( normℎ ‘ 𝐴 ) = 1 → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
| 16 | normne0 | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) | |
| 17 | 15 16 | imbitrid | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) = 1 → 𝐴 ≠ 0ℎ ) ) |
| 18 | 17 | imp | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) → 𝐴 ≠ 0ℎ ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ≠ 0ℎ ) |
| 20 | pjspansn | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) = ( ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) ) | |
| 21 | 11 12 19 20 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) = ( ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) ) |
| 22 | kbval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ·ih 𝐴 ) ·ℎ 𝐴 ) ) | |
| 23 | 22 | 3anidm12 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ·ih 𝐴 ) ·ℎ 𝐴 ) ) |
| 24 | 23 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ·ih 𝐴 ) ·ℎ 𝐴 ) ) |
| 25 | 10 21 24 | 3eqtr4rd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) ) |
| 26 | 25 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) → ∀ 𝑥 ∈ ℋ ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) ) |
| 27 | kbop | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ketbra 𝐴 ) : ℋ ⟶ ℋ ) | |
| 28 | 27 | anidms | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ketbra 𝐴 ) : ℋ ⟶ ℋ ) |
| 29 | 28 | ffnd | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ketbra 𝐴 ) Fn ℋ ) |
| 30 | spansnch | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Cℋ ) | |
| 31 | pjfn | ⊢ ( ( span ‘ { 𝐴 } ) ∈ Cℋ → ( projℎ ‘ ( span ‘ { 𝐴 } ) ) Fn ℋ ) | |
| 32 | 30 31 | syl | ⊢ ( 𝐴 ∈ ℋ → ( projℎ ‘ ( span ‘ { 𝐴 } ) ) Fn ℋ ) |
| 33 | eqfnfv | ⊢ ( ( ( 𝐴 ketbra 𝐴 ) Fn ℋ ∧ ( projℎ ‘ ( span ‘ { 𝐴 } ) ) Fn ℋ ) → ( ( 𝐴 ketbra 𝐴 ) = ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) ) ) | |
| 34 | 29 32 33 | syl2anc | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝐴 ketbra 𝐴 ) = ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) → ( ( 𝐴 ketbra 𝐴 ) = ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) ) ) |
| 36 | 26 35 | mpbird | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) → ( 𝐴 ketbra 𝐴 ) = ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ) |